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Abstract. This work introduces a novel Graph-based Retrieval-
Augmented Generation (GraphRAG) approach, which enhances the
accuracy of Large Language Models (LLMs) on the medical Ques-
tion Answering (QA) task. The proposed approach aims to alleviate
limitations of previous ones, such as the overreliance on facts from
outdated knowledge bases, the adherence to specialized ontologies,
and the lack of utilization of performance-oriented techniques (e.g.,
model weight quantization). To do so, (i) it automatically extracts
factual triplets from medical questions using a state-of-the-art LLM,
while allowing fact verification by medical experts; (ii) it connects
the entities from these factual triplets into a Knowledge Graph (KG);
(iii) it represents graph entities using pre-trained transformer embed-
dings stored in an in-memory vector framework, and (iv) it lever-
ages these embeddings, firstly by finding similar KG entities to the
extracted terms of the user question, and secondly by semantically
ranking the fop-n most relevant factual triplets to the user question,
which are then used as enriched context for the LLM. To verify the
validity of our approach, we conduct a series of experiments using
a prominent medical QA dataset (MedMCQA) to measure the accu-
racy of our approach by incorporating various open source LLMs. In
addition to these experiments, we investigate the effect of different
context lengths on the accuracy achieved. To the best of our knowl-
edge, this is the first GraphRAG approach that empirically measures
the accuracy of LLMs on QA, while utilizing 4-bit quantization. It
is shown that our approach improves model accuracy up to +5.5%
over the baseline ones, while it requires significantly less compu-
tational resources compared to previous approaches. To enable the
reproducibility of our work, we make the extracted triplets and code
publicly available.

1 Introduction

Recent advancements in the field of Deep Learning have led to
the development of Large Language Models (LLMs), which have
general-purpose language understanding and reasoning capabilities
[20] and have managed to significantly advance the state-of-the-art
performance in many Natural Language Processing (NLP) tasks [37].
However, despite their capabilities, LLMs face a series of challenges
when handling domain-specific questions, due to the lack of domain
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knowledge and the outdated information often used [32]. A particular
domain where LLMs face such challenges is the medical one [9,133]].

To address these challenges, several strategies have already been
proposed [204 [37]]. Most of them rely on different prompting tech-
niques with increased context, while some continue the pre-training
or post-training (fine-tuning) of these models. In any case, LLM
training requires expensive hardware (i.e., large VRAM GPUs) due
to memory requirements, as well as a significant amount of compu-
tational time. On the other hand, context-enabled strategies, such as
Retrieval Augmented Generation (RAG), retrieve relevant informa-
tion from an external knowledge base and then supply this context
to the LLM to improve its response. However, RAG strategies re-
quire more memory and computational time at inference (instead of
training), due to the longer context presented to the model. This lim-
itation is inherited from the attention mechanism of the Transformer
architecture [30], which is the building block of LLMs.

A major drawback of common RAG approaches is that they re-
trieve independent text passages that are relevant to the users’ ques-
tion [10, [15] without considering semantic connections, which ex-
ist between entities from the retrieved passages or the entire textual
corpus. To overcome this drawback, recent approaches - known as
GraphRAG - integrate entities extracted from text and their connec-
tions into a semantic graph [5 [10} 26]. Specifically, GraphRAG ap-
proaches build on the concept of Knowledge Graphs (KGs), which
represent real world entities and their connections, organized in se-
mantic graphs [25]. A recent survey [24] highlighted that LLMs can
benefit from their integration with KGs, by leveraging their struc-
tured knowledge to improve their accuracy and reduce erroneous an-
swers due to model hallucinations. Additionally, other studies have
leveraged the generative capabilities of LLMs to construct a biomed-
ical KG [35] and develop an approach for graph entity linking [36].

In any case, several GraphRAG approaches demonstrate a series
of limitations: (i) they rely on existing KGs, without addressing the
phase of graph construction from unstructured data, which requires
great manual effort by domain experts; (ii) they often utilize KGs
with outdated domain knowledge [3]] (e.g., medical KGs introduced
before the Covid-19 era); (iii) during information retrieval, several
approaches traverse the KG to retrieve entities that match exactly
those existing in the user question; this disregards highly similar or
synonymous entities that are not included in the initial query; (iv)
they do not employ memory optimization techniques, such as LLM
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model weight quantization [18]]; they store the entire KG in memory
instead of utilizing a scalable graph database, such as Neo4j [21]; (v)
they do not examine the “accuracy vs. performance” tradeoff, which
occurs when limiting the context provided by the knowledge base.

Focusing on the medical QA task, the aim of this paper is to de-
velop and assess an accurate and efficient GraphRAG approach that
addresses the above limitations. The proposed approach automat-
ically creates KG triplets from unstructured text (question-answer
pairs) and stores them in a scalable graph database. These triplets
can be retrieved from the KG and used as additional context by an
open source LLM that has small memory requirements due to quan-
tization. The contributions of this paper are the following:

e we introduce a novel GraphRAG approach, namely Vector-
GraphRAG, that does not rely on specialized ontologies or exist-
ing medical KGs, which often maintain outdated domain knowl-
edge [3];

e we propose an automatic KG construction process, which ex-
tracts factual triplets from QA pairs by leveraging a state-of-the-
art LLM;

e we store these triplets in a human readable format (.csv) to facili-
tate their evaluation and possible amendment by medical experts;

e we perform a series of experiments using different prompting
strategies and several open source LLMs on a prominent medi-
cal QA dataset, namely MedMCQA [23], aiming to elaborate and
answer a set of research questions (RQs); specifically:

— RQ1: Does the automatic creation of triplets using GPT-4o
mini [T_]from QA pairs achieve close or better accuracy than the
state-of-the-art approach [34]], without relying on existing med-
ical KGs with specialized ontologies?

— RQ2: Is there a meaningful accuracy drop for medical QA
when using quantized LLMs (4-bit precision) vs. unquantized
ones (16-bit precision)?

— RQ3: How does VectorGraphRAG compare against other ap-
proaches that utilize different prompting strategies in terms of
accuracy?

— RQ4: Can we maximize the LLM accuracy while minimiz-
ing the retrieved KG context (as measured by the number of
triplets)?

The remainder of this paper is organized as follows: state-of-the-
art LLMs and medical GraphRAG approaches are described in Sec-
tion 2, highlighting their benefits and limitations; the proposed ap-
proach is described in Section 3; our experimental setup and results
are presented in Section 4; finally, concluding remarks and future
research directions are outlined in Section 5. To facilitate the repro-
ducibility of our work, we make our code and extracted triplets pub-
licly available

2 Related Work
2.1 Large Language Models

LLMs can handle various NLP tasks, due to their autoregressive ar-
chitecture, extensive training on vast amounts of data, and alignment
with human instructions through reinforcement learning [37]]. Many
prompt engineering techniques exist for these models, such as zero-
shot and few-shot learning [2] for simple tasks, or Chain-of-Thought
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(CoT) for complex reasoning tasks [20]. For domain-specific tasks,
LLMs can be improved with specialized knowledge from external
sources using RAG [32].

So far, several proprietary and open-source LLMs have been pro-
posed. Proprietary models, such as OpenAl’s ChatGPT [2], offer
state-of-the-art performance in many tasks but are costly, let alone
the fact that their use in sensitive applications requiring data privacy
is not possible in the EU due to GDPR regulations [6]. On the other
hand, open-source models can be deployed locally at minimal cost,
thus making them suitable for privacy-sensitive applications.

In this study, we consider a series of remarkable open-source fami-
lies of models that achieve state-of-the-art accuracy in several bench-
mark tests reported in the literature. These include Llama 3 [8]],
Gemma 2 28|, Mistral 12|, Command R [4] and Falcon [1]. Each
of these families has several models of different parameter sizes. The
smaller versions can be very efficient, especially when combined
with RAG techniques that can improve accuracy without requiring
large VRAM GPUs for inference.

2.2 Medical QA works

HyKGE [13] is an approach that combines LLMs and KGs for med-
ical QA. It builds a medical KG by combining existing ones and
adding entity descriptions from encyclopedic knowledge bases. It
prompts the LLM to generate an initial answer, extracts terms from
this answer and the user query, and utilizes them to retrieve graph
paths from the KG. The graph paths are ranked using a pretrained re-
ranker model and the rop-k most relevant ones to the user’s query are
selected. The graph paths are then used as reasoning context for the
LLM to generate the final answer. Experimental results indicate that
HyKGE surpasses the accuracy of previous RAG models in medical
QA. However, the authors do not make their code publicly available.

Labrak et al. [17] evaluate the capabilities of several LLMs on
various medical and clinical NLP tasks. Their findings indicate that
LLMs can sometimes handle such tasks without domain-specific
knowledge, using zero-shot and few-shot prompting strategies. A ma-
jor limitation of this work is that it does not provide any specialized
medical knowledge to the LLMs - either through RAG or fine-tuning
- to improve their performance.

Bailicai [19] is a multi-component GraphRAG approach for med-
ical QA. The first component prompts the LLM to determine if it can
answer the user’s query with its internal knowledge; if the LLM an-
swers positively, the next components are skipped. The second com-
ponent utilizes the LLM to break down complex queries into sub-
tasks, which are modelled into a directed acyclic dependency graph.
By considering this graph, the LLM solves each subtask; these inter-
mediate answers are used as context for the final answer of this step.
The third component fine-tunes the LLM to identify relevant med-
ical documents. The fourth component utilizes an in-memory vec-
tor index to retrieve the most relevant paragraphs to the user query
from multiple literature sources. A major limitation of Bailicai is the
amount of memory required to store the vector index (~181.7 GB).
Apart from this memory intensive RAG component, this approach
also uses multiple LLM generations and fine-tuning, which make it
computationally expensive.

MedGraphRAG [34] improves LLM accuracy in medical QA by
utilizing a multi-layer KG from multiple sources. Similarly to Mi-
crosoft’s Graph RAG, it generates summaries from graphs to improve
the retrieval step. Nevertheless, it uses structured summaries with
predefined tags (e.g., “Symptoms”, “Patient_History”, etc.). Med-
GraphRAG compares these graph summaries with the user’s query



summary to find the most relevant KG triplets, which are then uti-
lized as context to generate and refine the final answer. Experimen-
tal results showed that MedGraphRAG achieves better accuracy than
baseline RAG approaches. However, a drawback of this approach is
that it performs numerous LLM generations for each subgraph, mak-
ing it computationally expensive. In addition, it relies on pre-existing
KGs that may contain outdated medical information.

DEEB-RAG [16] is a biomedical QA approach that utilizes RAG to
retrieve the fop-k most relevant documents to a user question. It uses
a pre-trained transformer-based model to encode the retrieved docu-
ments into embeddings, which are processed by a trained two-layer
perceptron to be aligned with the dimensional space of the LLM (i.e.,
Llama-2 [29]]) hidden layers. The aligned vectors are combined with
the original token-level embeddings from questions and documents,
and they are fed to the LLM to generate the final answer. Related
experiments reveal that DEEB-RAG performs better than naive RAG
across various datasets. A major limitation of DEEB-RAG is that it
leverages an outdated LLM architecture.

BioKGQA [35] is an approach that automatically constructs a
biomedical QA dataset by extracting factual triplets from KGs and
leverages LLMs to generate questions from these triplets. It has been
applied to create a dataset that contains 85,368 QA pairs alongside
the SPARQL queries utilized to extract KG facts. A series of exper-
iments has been performed to measure the quality of the generated
questions from various LLMs. However, the extracted KG context is
not utilized for RAG or LLM fine-tuning, while the overall approach
does not address the automatic KG construction step from unstruc-
tured data or the integration step from multiple KGs.

3 VectorGraphRAG: The Proposed Approach

VectorGraphRAG includes two multi-step processes. The first one
concerns the extraction and representation of knowledge (see Sec-
tion 3.2 and Figure E]), while the second one is the retrieval of the
appropriate KG triplets to be used for RAG (see Section 3.3 and Fig-

ure2).

3.1 Preliminaries

Definition 1: Semantic entity and relationship. We define a semantic
entity as e;, where e; € E and a semantic relationship as 7,
where r; € R; E and R are the sets of extracted entities and their
relationships (predicates), respectively.

Definition 2: Semantic Triplet. We define this triplet as
t; = (ei,rx,e5), where ¢ # j and ¢t; € T. e; and e; are the
head and tail entities, respectively, and 7 is the predicate of these
entities. Finally, T = {t1,...,tn} is the set of semantic (factual)
triplets, where 7' C E¥ X R.

Definition 3: Knowledge Graph. We define a KG as an attributed
graph: KG = (V,GEg, E,R), where V = {v;,...,un} is the set
of graph vertices, G C V x V is the set of graph edges. We also
define a function ¢:

¢ = {61- — v, = ge; Vv € Vie; € E,r; € R,gE, € GE},
M
which maps semantic entities and predicates to graph vertices and
edges, respectively.

Definition 4: Semantic vector (embedding) computation. We

define an encoding function X = {e; — z; V e; € E}, where
z; € R®is a semantic vector of dimension d, which comprises
real value coefficients. This vector semantically represents a textual
sequence by leveraging a pre-trained transformers model.

Definition 5: Similarity function. We define a cosine similarity
function between two semantic vectors z; and x; as:

_ x; X T j
[l I[]51 |

@

$iMcos(Ti, T5)

3.2 Knowledge Extraction and Representation

The first step of this process extracts factual triplets from each
question-answer pair, by prompting a state-of-the-art LLM (i.e.,
GPT-40 mini). The second step constructs a .csv file from the set
of triplets T; this format is selected to facilitate any possible amend-
ments by medical experts. The third step loads the KG data from the
file into a graph database. We also place uniqueness constraints on
the entity names, to avoid storing duplicates. The fourth step involves
the use of a sentence transformers model [27]], called all-mpnet-base-
VZEI, to semantically encode the entities into vectors (embeddings) as
described in Definition 4. These vectors are saved in a binary numpy
array file [11] to avoid encoding each time they are required for RAG.

3.3 Ranked Retrieval Augmented Generation

The first step of this process initializes the graph database that con-
tains the KG, and loads three important components into memory:
(1) the LLM using 4-bit quantization (GPU); (ii) the sentence trans-
formers model (RAM); (iii) the entity embeddings (RAM). We then
build a cosine similarity index (RAM) using FAISS [14], an efficient
vector similarity framework.

The second step concerns the extraction of search terms from
the user question. To do this, we remove stop-words, tokenize the
sentences, and extract all n-grams from each sentence, where n €
{1, 2, 3}. Each n-gram is encoded using the embedding model.

The third step finds the fop-k most similar KG entities to the ex-
tracted search terms from the similarity index, using the R function:

Rg = (simcos(Ti, 8i)|SiMecos (x4, 8i) > 0.9)

3)

Where S is the set of search terms and s; the vector embedding for
each element of the encoded set.

The fourth step traverses the graph database to retrieve triplets,
whose entities match either the search terms or the top-k most simi-
lar ones. We then use the sentence transformer model to encode the
question Q and the triplets 7 to find the fop-n most similar triplets
using the Ry function:

argmax
z, EX(E)As; €X(S)

RT = aTgmali(Simcos (yia X(Q))|Simcos (yi7 X(Q)) > 01)
Y €X(T)
)

Longer text sequences tend to generate lower similarity scores; thus,
the cutoff in equation [4] is much lower in order to avoid dissimilar
triplets (i.e., triplets with similarity scores in the range [-1, 0]). The
final step utilizes the fop-n triplets as textual context for the LLM by
embedding them in the prompt.

3 https://sbert.net/
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4 Experiments
4.1 Experimental Setup

In terms of hardware, we utilize a PC with an Intel Core i9-13900K
CPU with 64 GB of RAM and an Nvidia RTX 3060 GPU (12 GB
of VRAM). With respect to software, we utilize HuggingFace Trans-
formers[z_f]to develop LLM inference code, and we build our KG with
Neodj E] As mentioned earlier, we also use sentence transformers to
encode entities into vectors, which are saved into numpy array files.
Finally, we extend FAISS to calculate the similarity indices.

4.2 Dataset and Knowledge Graph

Similarly to other works, we validated our approach using the MedM-
CQA dataset. Specifically, to build our KG, we utilized its training
part, which comprises ~183K medical questions. We selected a sub-
set of it comprising ~120K questions, labelled as ‘“‘single choice”,
where each choice contains a single option.

Then, we utilized the data extraction prompt (Table[l) and GPT-
4o mini, which was accessed through the OpenAl API %Dto create a
semantic triplet from each question-answer pair. A post-processing
step was applied to remove empty and malformed triplets (e.g., those
without a subject or an object). The data extraction step costed 2.49%
dollars’ worth of credits. Alternatively, we could also use an open-
source model (e.g., Llama-3.3 70B) to eliminate the credit cost; how-
ever, due to memory hardware limitations, this was not possible. The
data generated are also available at the repository of this paper E]
For our experiments, we utilized the evaluation part of MedMCQA,
which consists of 4186 question-answer pairs (not included in the
training part). Specifically, we selected the single choice questions
(2816 in total).

4.3 Experiments

For the medical QA task, the LLMs were instructed to select the cor-
rect answer from a list of possible ones. To extract the answer from
the model output, we utilized regular expressions. These answers
were then compared with the correct ones to calculate the accuracy
score. Table 2] summarizes the results of our experiments concerning
the evaluation of several open-source LLMs, while a comparative as-
sessment of our approach against previous ones is given in Table 3]
To ensure the reproducibility of our results, we use a specific random
seed and we set the model temperature to 0.0.

As shown in Table 2] there is an increase in the accuracy of
all models considered (up to +5.5%) when using VectorGraphRAG
(compared to the case that the models use just their internal knowl-
edge, i.e., Baseline). For the best performance of VectorGraphRAG,
we set the number of triplets to 300 and we retrieve the top-10 most
similar terms to each question term extracted from the KG.

These parameters are selected based on additional experiments
that were performed using Llama-3.1 (see Figures 3] @). As shown
in Figure[3] the model accuracy peaks at 300 factual triplets and then
decreases to the baseline accuracy at 600 triplets. Afterwards, it starts
increasing, until a local optimum is reached at 1100 triplets; after
this point, the accuracy drops significantly. Thus, we infer that we
can maximize the LLM accuracy while minimizing the retrieved KG
context (measured in the number of triplets). As mentioned above,

4 https://huggingface.co/transformers/

5 https:/neodj.com/

6 https://github.com/openai/openai-python

7 https://github.com/NCODER/VectorGraphRAG

Table 1. LLM Prompts used in this study. Square brackets signify the
placement of sub-prompts, while text variables appear in angle brackets.

Prompt

Data Extraction
(GPT-40 mini)

Please extract a semantic triplet in the form
(subject, predicate, object) from the follow-
ing question answer pair. Use the Answer in
your triplet.

Question: <question_text>
Answer: <correct_answer_text>
Output only the triplet itself.

Question answering
(VectorGraphRAG)

[system_prompt]

[user_prompt]

To answer the question use the following
context.

Context: <factual_triplets>
Question: <question>
Options:
<possible_answers>

Question answering [system_prompt]

(Baseline) [user_prompt]
To answer the question use your internal
knowledge.
Question: <question_text>
Options:
<possible_answers_text>

System You are an informative chatbot. Please an-
swer the user’s question to the best of your
ability. If you do not know something please
state that to the user.

User This is just an evaluation question of a med-

ical question answering dataset. Please an-
swer this question by selecting the correct
answer from the options below.

Table 2. Experiments on MedMCQA; Acc. denotes the accuracy percent-
age score of each setup.

LLM Baseline Acc. (%) VectorGraphRAG
Acc. (%)
Llama-3.1 (8B) 55.26 57.03
Gemma-2 (9B) 53.91 57.39
Command-R (7B) 39.67 45.17
Ministral (8B) 48.01 50.46
Falcon-3 (10B) 52.59 57.14

for each medical term we retrieve the top-k most similar terms. To
find the optimal number of k, we experiment with several values,
while keeping the number of triplets to 300. As shown in Figure [
the accuracy fluctuates, with 10 being the best value of k.

We also compared the proposed approach with similar ones. As
shown in Table [3] previous approaches underperform with the sole
exception of MedGraphRAG. An interesting remark is that our ap-
proach achieves near state-of-the-art accuracy, while being much
more efficient, due to its performance-oriented design and the use
of a single LLM generation for RAG. In contrast, MedGraphRAG
requires multiple LLM generations to summarize graph communi-
ties that contain medical facts to achieve state-of-the-art accuracy.
Similarly, Bailicai utilizes multiple LLM generations and performs
fine-tuning, both of them being computationally expensive [37].

It is also stressed that our approach achieves better performance
(even with the quantized LLM), compared to previous ones with
non-quantized LLMs (except MedGraphRAG). Thus, by using 4-bit
quantized LLMs, we reduce the required memory by 75%, without



Table 3. Comparative assessment of VectorGraphRAG against other
approaches; Acc. denotes the accuracy percentage score of each setup.

Approach Acc. (%)
VectorGraphRAG - Llama-3.1-8B (full precision) 57.14
VectorGraphRAG - Llama-3.1-8B (4-bit precision) 57.03

MedGraphRAG - Llama-3-8B [34] 61.6
5-shot - ChatGPT-3.5 [17] 56.37
Bailicai-8B [19] 55.89

RAG - Llama-3 [19] 55.27

CoT - ChatGPT-3.5 [19] 53.79

CoT - Llama-3-8B [19] 52.52
Zero-Shot - ChatGPT-3.5 [17] 4891
DEEB-RAG - Llama-2-7B-chat [[16] 34.6

sacrificing accuracy, which is particularly useful given the high cost
of GPUs with large VRAM.

From our experimental results, we also infer that providing only
the most relevant information to the LLM and not filling its entire
context window with unnecessary information leads to accuracy and
performance benefits. In this study, we utilized several prompts that
are listed in Table[T]

Llama-3.1 (8B)

57,5
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__565
X
=
(%)
T 56
3
Q
<
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Figure 3. Measuring the effect of accuracy based on the number of factual
triplets.
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Figure 4. Measuring the effect of accuracy based on the number of most
similar terms.

5 Discussion

VectorGraphRAG overcomes the limitations of previous medical QA
approaches. Specifically, it: (i) automates the process of building a
KG by using an LLM to extract triplets from QA pairs, thus reducing
the labor of domain experts; (ii) utilizes a scalable graph database
that loads only a small portion of the KG, thus being able to scale
on larger KGs that do not fit entirely in memory; (iii) utilizes a small
in-memory vector index to accelerate the entity search based on the
top-10 most similar terms; (iv) once the appropriate graph context
is retrieved, performs a single LLM generation instead of multiple
ones to significantly decrease the total inference time; (v) ranks the
triplets and limits them to provide only the most relevant context
to the LLM, thus increasing accuracy, and (vi) utilizes LLM 4-bit
quantization, which approximately requires a quarter of the amount
of VRAM compared to other approaches, without any significant ac-
curacy loss.

Based on the above remarks, we can answer the research questions
listed in the Introduction. Overall, we introduced a novel approach
that uses an LLM for automatic triplet creation instead of relying
on existing medical KGs or specialized ontologies (RQ1). Our ex-
perimental results showed that using a quantized LLM does not sig-
nificantly reduce model accuracy (RQ2). When considering the re-
sults from other approaches with different prompting strategies, we
observed that non-GraphRAG approaches underperformed [19, [17]
(RQ3). Finally, as shown in Figure EL we observed that increasing
the amount of retrieved KG context does not always improve accu-
racy (RQ4).

In any case, our approach has a set of limitations. First, it re-
quires a large state-of-the-art LLM (i.e., GPT-40 mini) for creating
the triplets. In addition, given the fact that the LLM might halluci-
nate when producing some of these triplets, a careful validation from
domain experts is required. Furthermore, our approach expects ques-
tions where there is a single correct answer; for questions where there
is no clear answer, we should build an extra processing layer.

As far as future work directions are concerned, we consider the in-
corporation of domain-specific ontologies in our approach, aiming to
further improve its accuracy. Additionally, we plan to support factual
triplet extraction from unstructured text, by building an additional
processing layer. A third work direction is to run experiments with
more evaluation metrics and QA datasets, as well as to employ hu-
man evaluation, aiming to get additional insights about the proposed
approach and generalize our research findings. A fourth work direc-
tion is to evaluate our approach for open QA [31], where the model-
generated answer is semantically compared to the one given by a
human. A fifth work direction is to integrate state-of-the-art LLM
embeddings from the MTEB leaderboard [22] to further improve the
accuracy of the proposed approach. A sixth work direction is to mea-
sure the exact performance benefits of our approach when compared
against similar ones. A final work direction involves the integration
of interpretable and explainable Al techniques, aiming to make our
approach more transparent [7].
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