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Abstract. This dataset description paper introduces a challenging
sequence processing task. Specifically, the task is to recognize faults
from aircraft gas turbine engine conditions where previous faults de-
termine how the presently observed conditions should be interpreted.
Several state-of-the-art deep-learning sequence processors have been
tested on the task, and these preliminary results demonstrate that they
cannot correctly model the phenomenon.

1 Motivation and Purpose

Time series forecasting and time series classification are the major
sequence processing tasks, and both depend on a method’s ability
to identify time-based patterns in the data. When dealing with long
sequence processing in particular, successful methods must identify
non-local patterns such as trends, seasonality, and long-range depen-
dencies. Observing large-scale and high-impact repositories such as
the Monash Time Series Forecasting Archive [2] reveals an abun-
dance of datasets that exhibit long-term trends and long-period sea-
sonal patterns, but a lack of datasets that exhibit non-periodic long-
range dependencies. Unsurprizingly, successful methods stem from
the non-parametric statistics field or from the deep learning field.

The sequential integration of sub-symbolic and symbolic mod-
ules allows connectionist recognition of single events to interact with
long-range dependencies between events. Such neuro-symbolic ap-
proaches are powerful, but to demonstrate their effectiveness they
must be applied to datasets and tasks where the following conditions
hold simultaneously: (a) the recognition of individual events in the
raw data is a non-trivial pattern recognition task for which connec-
tionist methods are more appropriate; and (b) this recognition is af-
fected by unknown symbolic patterns that need to be discovered in
conjunction with the sub-symbolic patterns themselves.

In this dataset description paper we present such a task where
purely connectionist sequence processing performs substantially be-
low the par established through the usual trend and seasonality tasks
and where neuro-symbolic methods can demonstrate their effective-
ness in challenging real-world applications.

2 Dataset Description

Jet engines play a vital role in aviation, and ensuring their safety
and reliability is paramount. The harsh environments they operate
in can cause malfunctions, impacting aerothermodynamic measure-
ments. Detecting faults in-flight from time-series data remains chal-
lenging due to limited instrumentation, similar fault effects, concur-
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rent faults, and prior events. This paper introduces a dataset of sim-
ulated time-series measurements from a turbofan engine, including
various common faults, to aid in developing fault detection strategies.
This dataset is valuable for the Machine Learning community, pre-
senting a complex engineering problem with unique features. It in-
cludes 2,410 time series, each with 3,600 time steps, where faults are
introduced, and measurements are taken at every step. Some faults
have nearly indistinguishable effects, posing challenges for differen-
tiation, while others exhibit long-term dependencies. These attributes
make the dataset suitable for research in sequential and time-stepwise
classification and investigating long-term dependencies. The dataset
comprises time series measurements from a low bypass ratio turbo-
fan engine, typical of modern civil aviation engines, generated using
an Engine Performance Model.

The dataset has been archived and is publicly accessible from
https://doi.org/10.5281/zenodo.15856441

2.1 Engine Performance Model

An EPM interrelates parameters that represent engine component
health and operating conditions with measurements performed on an
engine [1], and can be expressed through Equation (1):

Y =g(u,f) (H

where g is a vector function representing the EPM, u is a vector
of measured quantities defining the engine’s operating point, Y is a
set of measurements for condition monitoring, and f is a vector of
engine component health parameters. Typically, two health param-
eters are used for each component: the flow factor (SW), indicating
the component’s swallowing capacity,and the efficiency factor (SE),
representing thermal efficiency. The application of such parameters
for assessing engine component health has been discussed in [3]. A
deviation of a health parameter from its nominal value signals a fault
in that component. As extensively discussed in [4] the ratio of de-
viations between two health parameters can serve as a characteristic
metric for faults such as fouling, increased tip clearance, erosion, and
foreign object damage. The severity of the fault correlates with the
level of this deviation. The deviation (or delta) of a health parameter
Af is defined as:

f—1f,
fo

where f denotes the value of the health parameter, and f,, its nominal
value.
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Using the EPM, the nominal values of the available measurement
set, denoted as Yo, can be computed for a specified operating point
u. These values correspond to the nominal health parameters, 5, and
are derived via the following relation:

Yo =g(u,fo) 3

Once a measurement vector Y is obtained from the engine, the
relative deviation AY (%) from its nominal value Yy, is defined as:
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To emulate realistic measurement conditions, random noise is su-
perimposed on the measurement deviations. The noise levels con-
sidered are consistent with those typical of this instrumentation, as
documented in [5].

2.2 Dataset Generation

The EPM used for dataset generation was developed in MATLAB.
At each time step, the data includes a labeled vector of measurement
deltas produced by the EPM at a specified operating point and a spe-
cific engine health condition. A total of 10 operating points were
considered, covering a broad range of the engine’s flight envelope.
Throughout a time series, all time steps correspond to the same op-
erating point. Additionally, five distinct health conditions were con-
sidered, as summarized in Table 1. The first health condition repre-
sents the nominal, healthy operation of the engine. The second health
condition (coded as TIP) models an increased clearance of the com-
pressor blades. As reported in [4], this fault results in a ratio of the
related health parameter deviations, ASW/ASE, of 0.2; the actual
deviations of ASW and ASE are around —1% and —5%, respec-
tively. The remaining three conditions involve a mistuning of the in-
let guide vanes of the compressor, damage caused by foreign objects
within the compressor, and the concurrent occurrence of VGV and
FOD faults. These conditions result in a ratio of —3, 1, and 0.2,
respectively. In all cases, deviations within the range of 0.7 to 1.3
times the aforementioned values are considered, simulating faults
of varying severity. Notably, the effects of TIP faults and the com-
bined VGV+FOD faults on the compressor’s health parameters are
the same, and therefore, measurements under these conditions fol-
low the same distribution. Each dataset record is labeled according
to the specific health condition present at that time step.

Table 1. Considered health conditions.

label  health condition ~ASE ASE ASW/ASE

1 Healthy 0% 0% N/A
2 TIP fault -1% -5% 0.2
3 VGV fault +3% -1% -3
4 FOD fault -4% -4% 1

5 VGV+FOD faults -1% -5% 0.2

Each time series comprises 3,600 time steps. During this period,
various health conditions may develop. A time series without any
fault contains measurements indicative of healthy engine operation
at all time steps. In other time series, the engine operates fault-free
initially, but at a certain point, a TIP, VGV, or FOD fault occurs and
persists until the end of the series. In some other time series, the en-
gine also operates fault-free initially, but at a certain point, a brief

period occurs during which a VGV fault is present. The engine then
continues to operate without faults until a later time step, when a
combined VGV+FOD fault manifests and persists for the remainder
of the time series. This scenario exemplifies a specific fault condition
characterized by a severe VGV fault leading to FOD. The damage
is attributed to the detachment of a particle from the VGV mecha-
nism, such as a loosened bolt, which is subsequently ingested by the
engine. The failure of the VGV mechanism may be preceded by a
transient VGV fault event, serving as an early indicator of the im-
pending failure. This scenario was selected because both the TIP and
VGV+FOD faults exert similar impacts on engine performance. The
key differentiator between the TIP fault and the VGV+FOD fault is
the long-term dependency of the latter on the initial, instantaneous
VGV fault.

3 Concluding Remarks and Next Steps

The dataset is used to evaluate the classification capabilities of se-
quential machine learning methods on time-series data with long-
term dependencies. Preliminary results suggest the dataset chal-
lenges current techniques. For example, Figure reffig:results shows
four classification methods trained on the dataset and tested on a
time-series segment containing a VGV+FOD fault. The methods, in-
clude an RNN, a GRU, and an LSTM, together with an MLP, trained
for point-to-point classification for comparison. All methods failed to
detect the VGV+FOD fault, though they detected a precursor VGV
fault at time step 740. Sequential methods have shown limited ability
to use information from prior time steps, performing similarly to the
point-wise MLP.
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Figure 1. Health conditions detection during a time-series of the dataset.
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