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Abstract.

Video Question Answering (VideoQA) is a key problem contribut-
ing to advanced video understanding. The rise of Multimodal Large
Language Models (MLLMs) has accelerated the improvement on
VideoQA tasks. However, MLLMs can produce inconsistent output
even for similar prompts and suffer from hallucinations and biases. In
this position paper, we envisage a novel pipeline, where scene graphs
representing people, objects, and relationships in a video are injected
in the MLLM prompt. We hypothesise that leveraging a symbolic
representation of the video content can improve accuracy and verifi-
ability and reduce the latency of MLLMs for VideoQA.

1 Introduction and Motivation

The rapid growth in the production and indexing of video content
across virtually all industry sectors - ranging from healthcare and law
enforcement to education and entertainment - calls for effective and
trustworthy methods for autonomously understanding videos. Au-
tomating video understanding could support application scenarios of
significant social impact, such as accident detection and diagnosis in
autonomous driving [6, 5], or fall detection and behaviour monitor-
ing for fragile and elderly patients [14, 15].

However, video understanding is a challenging task for state-of-
the-art methods in Computer Vision as it requires advanced spa-
tiotemporal, causal, and abductive reasoning capabilities. Video
Question Answering (VideoQA), i.e., the ability to autonomously
answer natural language queries about an input video, is one cru-
cial prerequisite towards achieving advanced video understanding
[19, 4]. This problem is particularly challenging in the case of long-
form video clips [4], where models ought to go beyond frame-level
comprehension to grasp long-range dependencies and complex inter-
actions between people and objects.

The rise of Multimodal Large Language Models (MLLMs) has ex-
pedited the advancement on VideoQA thanks to the impressive accu-
racy of these models in answering queries from multi-modal prompts
comprising video and text [17]. However, this rapid advancement has
also raised significant concerns. First, these models operate as black-
boxes and produce inconsistent outputs for similar prompts, com-
plicating the task of verifying answers against supporting evidence
[13]. Second, they often hallucinate, fabricating objects, people, and
events inconsistent with the video content [1]. Moreover, they fre-
quently over-rely on the textual prompt, neglecting the visual input -
an issue also known, in the literature, as language bias [10, 8]. This
issue is exacerbated by the MLLMs potential to produce harmful,
discriminatory, or toxic content [8].

Scene Graph Generation (SGG), which extracts spatio-temporal

graphs from videos to represent entities and their relationships,
has been increasingly overshadowed by the rise of MLLMs. How-
ever, scene graphs can help structure and make more consistent
the MLLMs responses, while offering a graphical aid to explain
model answers. For example spatio-temporal scene graphs can pro-
vide timestamped links between “pedestrian,” “vehicle,” and “cross-
walk”, allowing instantaneous path-finding analyses of collision se-
quences. Similarly, in assisted living scenarios, a graph could be used
to investigate the cause of a fall accident, by analysing that, e.g.,
“a liquid substance" appeared “on the floor" just before the “fall"
event. Crucially, because the heavy lifting of video parsing is done
just once, every subsequent query runs directly against the graph,
which provides a lightweight representation of the video.
Focus and background We propose to adopt scene graph repre-
sentations as a bridge between the visual content of the video and the
textual query. This hybrid approach is aligned with the rapidly re-
emerging interest in the field of Neuro-symbolic (NeSy) Al, which
advocates for leveraging the strengths of sub-symbolic (i.e., data-
driven) learning methods and symbolic knowledge representations
[16, 9]. Despite continuous efforts in the fields of SGG and NeSy
Al, the integration of scene graphs in prompts remains rather unex-
plored in the Computer Vision community. A few recent approaches
to VideoQA based on LLMs exploit scene graphs i) only for specific
sub-tasks such as object tracking or action recognition, ii) by adopt-
ing expensive training procedures to fine-tune the model directly on
graph data [7, 18, 2]. We explore instead a different approach where
scene graphs are injected directly in prompts, inspired by promis-
ing results tested in [12] on images, showing that integrating scene
graphs in textual prompts can improve the compositional reasoning
abilities of MLLMs. Our setting is similar, in principle, to Chain of
Thought reasoning [3, 20, 7], where a more complex problem is bro-
ken down into individual subproblems. That is, we aim at encourag-
ing the MLLM to think about the graph structure before providing
answers. To achieve this objective, we ask:
o Can MLLMs be effectively applied to generate scene graphs from
video inputs without resorting to manual annotations?
e Can integrating scene graphs into textual prompts in place of
video frames improve the MLLMs accuracy and inference speed
on VideoQA tasks?

2 Proposed approach

In our experiments we compare two pathways: generative graph QA
and direct VideoQA (Figure 1). Both pipelines share common up-
stream components, but diverge in how they represent and process
visual information.
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Figure 1. Overview of our two VideoQA pipelines. Top: Generative
Graph QA: frames are first converted to scene graphs by an MLLM,
aggregated, and then reasoned over by an LLM. Bottom: Direct VideoQA:
frames are fed directly to an MLLM for VideoQA.

Temporal Sampling Given a video of duration T, we applied two
different sampling strategies: i) using a fixed number of frames (N=5)
at uniform intervals, and ii) uniform sampling at 1 fps.

Prompt Engineering for Structured Perception and Reasoning
To ensure consistent behavior across models, we adopt a two-stage
prompting scheme based on established zero-shot Chain-of-Thought
principles [11]. Each stage of our pipeline is driven by:
Task-Prompting. For Generative Graph QA, we use a prompt com-
prising the graph, question, and answer alternatives. For Direct
VideoQA, in the prompt we replace the graph with the image.
Output Formatting. We constrain responses to structured graphs or
explicit final answers, to aid deterministic parsing and make the over-
all evaluation more consistent.

NeSy Path: Generative Graph QA In the NeSy pipeline, we de-
couple perception and reasoning through an explicit scene-graph in-
termediate representation. This process unfolds in three stages:
Scene-Graph Generation is performed in two variants: per-frame
generation, where each frame is independently processed into a scene
graph; batch generation, where all frames are jointly presented to the
MLLM, to provide spatial and temporal context.

Graph Aggregation. We concatenate the per-frame graphs into a sin-
gle graph G=(V,E), i.e., a temporally-ordered list.

Graph-Based QA. The LLM is fed with the graph, the question, and
multiple-choice alternatives. The LLM reasons step-by-step over the
structured input to select the most consistent answer. The presence
of the graph enforces transparency over the reasoning process, sup-
porting error analysis and human verification.

Baseline Path: Direct VideoQA In contrast, in the Direct
VideoQA pipeline frames are embedded directly into a multimodal
prompt alongside the question and answer choices. The MLLM is re-
sponsible for both perception and reasoning, leveraging its joint rep-
resentation space to produce an answer. Operating only in one step,
this approach lacks transparency and modularity, and may underper-
form especially on clips of growing length and complexity.
Evaluation Protocols To rigorously compare these paradigms, we
implement both pipelines under identical sampling strategies and
prompt templates, using Gemma3 4b as both the MLLM and LLM.
All components are run on a single NVIDIA GTX 1080 GPU. We
evaluate on 1,048 questions in the validation set of STAR [19], with
respect to the following metrics: (i) Accuracy: Exact-match correct-
ness; (ii) Latency: End-to-end inference time per question; (iii) Com-
plementarity: Unique hits, instances where one pipeline succeeds and
the other fails. Table 1 shows our preliminary results.

Pipeline Int. Seq. Pre. Fea. Avg Lat.(h) UH.(%)

Direct VideoQA 48.0 515 41.8 39.1 457 14 -

GT GraphQA 58.0 63.3 756 66.1 62.8 3 -
Gen-Graph (Frame) 40.3 354 393 327 371 48+5f 12.3
Gen-Graph (Batch) 31.0 26.1 27.6 264 27.9 16+4" 8.6

Table 1. Accuracy per question type. Latency in minutes. U.H.: Unique
Hits—examples correctly answered only by the Gen-Graph pipeline. STAR
data includes four subsets: Interaction (Int.), Sequence (Seq.), Prediction
(Pre.), Feasibility (Fea.). “SGG latency + Graph-Based QA latency

3 Discussion and Future Directions

Our dual-pipeline study highlights a central tradeoff in the design of
VideoQA systems: efficiency and interpretability via symbolic rep-
resentations versus end-to-end accuracy from direct multimodal in-
ference. As shown in Table 1, methods based on generated graphs
exhibit lower overall accuracy compared to the direct VideoQA ap-
proach. Crucially, using ground truth scene graphs provided with
STAR (GT GraphQA, in the table) led to the highest accuracy for all
question types. Thus, we can hypothesise that the 8—10 % drop in GT
GraphQA experiments is primarily caused by the generated graphs
rather than the QA step. For all graph-based pipelines, the latency
is higher than in the Direct VideoQA setting, due to the computa-
tional cost of scene graph generation (also note the lowest latency in
the GT GraphQA case). Despite this overhead, the symbolic pipeline
recovers 12% of questions that the direct pipeline fails to answer cor-
rectly. Moreover, thanks to integrating graphs in prompts, the NeSy
pipelines produce outputs ready for human verification, enabling the
direct comparison between answers and graphs.

We also observe meaningful performance differences between
NeSy variants. Batch-based graph extraction, which incorporates
temporal context across frames, yields slightly lower accuracy but
lower latency thanks to generating graphs once per batch. Hence,
how symbolic information is extracted and structured directly influ-
ences downstream performance and latency.

In response to our initial research questions: Neuro-symbolic in-
tegration of graphs in MLLM prompts can enhance accuracy and la-
tency in sub-symbolic pipelines when relying on ground truth graphs.
However, a significant performance gap remains when graphs are
generated with LLMs. These findings suggest that scene graphs can
serve as interpretable interfaces within modern MLLMs pipelines.
Limitations and Future Work Our current implementation is
still preliminary and suffers from a few limitations. First, gener-
ated graphs omit attributes or objects essential for answering certain
questions. Second, generating graphs and answering questions in two
steps causes a bottleneck. Finally, we evaluated only on short STAR
clips and generalization to longer videos is still untested.

However, we see several promising directions for future exploration:

e Improving the quality of generated graphs by dynamically sam-
pling the most salient video frames, as well as ensuring temporal
alignment and co-reference resolution.

e Extending our prompting strategies by combining graphs and
frames in the same prompt, enabling LLMs to cross-reference
symbolic and raw visual data.

e End-to-End Learning, explore graph-aware finetuning of VLMs
for joint SGG and VideoQA.

e Extending our evaluation to transparency and trustworthiness met-
rics, and conducting statistical robustness tests to verify comple-
mentarity effects across datasets and question types.
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