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Abstract. Safety-critical systems have seldom been used as an ap-
plication domain for neuro-symbolic AI, despite their inherent char-
acteristics that combine generation and processing of raw data, com-
ing from heterogeneous devices, with enforcement or discovery of
properties, usually encoded as rules or constraints. In this paper, we
consider the task of classifying sequences of perceptual stimuli col-
lected from a safety-critical system, where safety-related properties
are represented in the form of linear temporal logic formulae. Our
preliminary results on a benchmarking framework for temporal rea-
soning show that this kind of problem can be extremely challenging,
for both neural-only and temporal neuro-symbolic approaches.

1 Introduction
Neuro-Symbolic (NeSy) Artificial Intelligence (AI) aims to combine
neural networks with symbolic approaches, with the goal of com-
plementing the capability of the former to handle and learn from
large data collections, with the expressivity of the latter in represent-
ing domain knowledge, typically in the form of rules, constraints,
or logic facts [9]. Despite the growing interest in this research area,
the successful applications of NeSy AI to real-world problems is
widely recognized as one of the most urgent open challenges in the
field [6]. Most of the existing literature in NeSy AI focuses on proof-
of-concept implementations, proposed throughout the years in sev-
eral domains, ranging from computer vision to knowledge base com-
pletion. Yet, the community is constantly looking for new bench-
marks and tasks with a wider and stronger impact on society [17].

In this paper, we propose to consider the domain of safety-critical
systems as a suitable scenario to test and apply NeSy techniques.
Safety-critical systems (SCSs) are domains in which failure might
produce significant damage to the system itself or to the environment,
or even loss of life [13]. Typical application areas include healthcare,
for critical tasks such as the monitoring of biomedical devices [24],
transportation, as in the case of aircraft flight control systems [22], or
space missions, for the detection of anomalies and cybersecurity vul-
nerabilities [25]. In most of these scenarios, safety must be ensured
by assessing that the behaviour of the system is compliant with strict
constraints, such as time constraints (e.g., tasks that must complete
their executions within certain time limits) or logic constraints (e.g.,
events that must occur in a predefined sequential order) [11, 8]. Many
formalisms can be used to model these systems, such as stochastic
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time Petri nets [3], deterministic or symbolic finite automata [10],
linear temporal logic (LTL) [15], fault trees [20, 21] and others, with
the aim of quantitatively evaluating dependability attributes [18, 4].

From the perspective of NeSy AI, SCSs represent an ideal setting
to design novel benchmarks on real-world problems because it com-
bines the availability of large data collections generated by physical
devices interacting with the environment, with domain knowledge
described via rules and constraints. Several NeSy tasks can be con-
ceived in this setting, depending on whether domain knowledge is
explicitly available or should rather be learned from examples, and
the variables of interest are fully or partially observable [2]. In this
paper, we propose to exploit NeSy AI approaches in the context of
SCSs, in particular for the task of classifying sequences of perceptual
stimuli according to their compliance to a certain LTL formula [14].

2 Case study
Consider an SCS made of two devices (A and B) characterized by
ten possible states {Y0, . . . , Y9} ∈ Y , each associated with a percep-
tual signature, in the form of audio spectrograms {X0, . . . , X9} ∈
X . Suppose this system must comply to a liveness property [1] F ,
asserting that an event p (“the sensor is in state 4”) registered by sen-
sor A must always be followed by another event q (“the sensor is in
state 7”), observed by sensor B. Events can be tracked, by system-
atically evaluating the validity of a set of relational predicates C, on
the state of the system over time. The behavior described above can
be represented compactly by the following specification:

X : = { , , , , , , , , , }
Y : = {Y0, . . . , Y9}
C : = {p(Z) : Z = Y4, q(Z) : Z = Y7}
F : = 2(p(A) → 3q(B))

This specification corresponds to an LTLZinc [14] problem, where
C is encoded as MiniZinc [19] constraints and F is a linear tem-
poral logic formula over finite domains (LTLf ) [5]. This framework
enables the design of experiments in different learning and reasoning
scenarios, depending on what kind of knowledge is available at train-
ing time, and which element of the tuple ⟨X ,Y, C,F⟩ constitutes the
learning objective. For example, in many cases, an SCS is designed
with predefined specifications in mind, and it is therefore reasonable
to assume prior knowledge about both C and F , but not the mapping



Pattern Category Best Epoch Avg Accuracy ↑ IC Accuracy ↑ CC Accuracy ↑ NSP Accuracy ↑ SC Accuracy ↑

IMMEDIATE FAILURE
NeSy 5 0.73 ± 0.04 0.78± 0.04 0.87 ± 0.02 0.63 ± 0.05 0.63 ± 0.05
Neural 5 0.68± 0.00 0.80 ± 0.01 0.86± 0.01 0.57± 0.00 0.50± 0.00

Random 0.36 0.10 0.50 0.33 0.50

LIVENESS
NeSy 2 0.76 ± 0.01 0.80 ± 0.01 0.83 ± 0.01 0.69 ± 0.00 0.71 ± 0.01
Neural 5 0.68± 0.01 0.76± 0.02 0.72± 0.01 0.64± 0.01 0.59± 0.02

Random 0.40 0.10 0.50 0.50 0.50

REAL-TIME RESPONSE
NeSy 3 0.66 ± 0.02 0.80 ± 0.00 0.85 ± 0.01 0.48 ± 0.00 0.52 ± 0.07
Neural 6 0.59± 0.02 0.76± 0.06 0.76± 0.02 0.35± 0.02 0.50± 0.00

Random 0.34 0.10 0.50 0.25 0.50

Table 1. Best results (mean± std over 3 replicates) on the proposed tasks. Random indicates a baseline with random predictions at each stage.
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Figure 1. Multi-stage architecture for temporal reasoning. Each block can
be instantiated in either neural or symbolic flavors. Adapted from [14].

X 7→ Y . Within this setting, a sequence classification task corre-
sponds to predict whether a given sequence of perceptual stimuli X t

along a discrete set of n timesteps t = {1, . . . , n} satisfies F or not,
and it corresponds to the verification of F within a given sequence
X t, by neuro-symbolic means. In other cases, either C or F could be
unknown, and the sequence classification task would thus involve the
induction of temporal safety properties directly from system traces:
in these settings, the NeSy system is trained to discriminate between
positive and negative sequences, without knowing neither F nor C.

3 Methodology
We address the sequence classification task exemplified in Section 2
by cascading multiple decisions, following the approach described
in [14]. In particular, we employ a multi-stage pipeline (Figure 1)
composed of the following sub-tasks: (IC) image classification, map-
ping data from each Xi to the corresponding Yi; (CC) constraint clas-
sification, leveraging relational knowledge C; (NSP) next state predic-
tion, leveraging temporal knowledge F ; (SC) sequence classification,
i.e., the final decision. Each stage i is associated with a loss function,
weighted by a corresponding hyper-parameter λi. IC and NSP are
trained by means of categorical cross-entropy, while CC and SC em-
ploy a binary cross-entropy loss.

4 Experiments
Using the LTLZinc framework,1 we generate three tasks, following
well-known LTL patterns for safety-critical applications [7]. For each

1 https://github.com/continual-nesy/LTLZinc

task, we assume three spectrogram images X,Y, Z, and the follow-
ing constraint mapping C:

C : p(X,Y, Z) : (X + Y ) ≡ Z mod 10;

q(X,Y, Z) : all_different([X,Y, Z]);

r(X,Y, Z) : (X < Y < Z) ∨ (X > Y > Z);

s(X,Y, Z) : X ̸= Z ∧ (X = Y ∨ Y = Z).

Each task corresponds to a different safety-critical property F :

IMMEDIATE FAILURE p is false after r:
2(r → 2¬p);

LIVENESS s always follows p:
2(p → 3s);

REAL-TIME RESPONSE s responds to p between q and r:
2((q ∧⃝3r) → (p → (¬rU (s ∧ ¬r)))U r).

Datasets contain 1000 sequences (800 train, 100 validation, 100
test samples) of random length between 10 and 25 timesteps. Each
timestep is associated with three RGB images sampled from the
UrbanSound-Spectrogram dataset,2 resized to fit into an 224 × 224
image with white background. Images are augmented during training
and inference, according to the original ResNet18 transforms [12].
The modular architecture of Figure 1 is initialized in two fla-
vors: NEURAL (ResNet18, Multi-layer Perceptron, Gated Recurrent
Unit, red dashed blocks), and NESY (ResNet18, Deep Problog [16],
NeSy Automaton [23], green dashed blocks). After selecting opti-
mal hyper-parameters (optimizer: Adam, learning rate: 10−4, MLP:
64 neurons, GRU: 64 hidden units) on the simplified task (the one
introduced in Sec. 2), we initialize the IC module with one epoch
of pre-training on image labels only, then supervise every stage
(λCC = λNSP = λSC = 1.0, λIC = 0.1) for a maximum of 7 epochs.

Table 1 summarizes the results on the test set, evaluated on the
best-performing epoch (selected by average accuracy across all mod-
ules, measured on the validation set). In general, it can be observed
that, although both NEURAL and NESY methods reach similar im-
age classification performance, downstream objectives become in-
creasingly difficult for the Neural-only method. Overall, the NESY

method achieves the best performance across all symbolic objectives
for every task, even though there is margin for improvement. Knowl-
edge availability can only partially compensate the challenging na-
ture of this setting, as even NESY approaches struggle with harder
formulae. Training behavior (not shown) indicates that this effect is
caused by severe over-fitting at the NSP stage, in spite of good up-
stream generalization of the CC objective, highlighting optimization
challenges of the NeSy Automaton module, in spite of full supervi-
sions available.
2 https://github.com/mashrin/UrbanSound-Spectrogram



These preliminary experiments show that, while significantly out-
performing knowledge-agnostic, neural-only methods, in every ex-
plored task, and in spite of perfect knowledge availability, NeSy per-
formance quickly degrades as temporal behavior increases in com-
plexity. To successfully deploy NeSy temporal reasoners in safety-
critical settings, it is crucial to boost their performance in a way
which is not affected by temporal complexity, especially for real-
world settings, where full supervisions are not available.
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