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Abstract. In recent years, various studies have been carried out
to assess whether Large Language Models (LLMs) possess different
reasoning capabilities, including those required in automated plan-
ning. Typically, these studies provide the LLM with a planning do-
main and a problem, specified by an initial state and a goal, and re-
quire the LLM model to generate a plan solving the problem. De-
spite this common configuration, such studies significantly differ in
the used models, the information provided to the model, the possible
involvement of symbolic planners, and the experimental approaches
used for the evaluation. Motivated by the growing interest in LLMs
and in the understanding of their reasoning abilities, in this work we
offer a concise review of recent studies on using LLMs for planning.
We outline the main research trends and discuss their most notable
findings. Furthermore, we identify key challenges and highlight crit-
ical aspects to consider when evaluating a LLM in terms of learning
to plan and generating solution plans.

1 Introduction

The remarkable success obtained by pre-trained Large Language
Models (LLMs) based on the Transformer architecture [43], such as
the GPT models developed by OpenAI [27], have been opening new
research lines which aim to understand the capabilities of such mod-
els. Due to the vast amount of textual data used in their training, they
possess huge knowledge about real-world entities in subjects like ge-
ography or history [14]. Additionally, they can perform simple lex-
ical operations [21], some common sense reasoning [6], and solve
mathematical problems [45]. However, the claim that LLMs possess
genuine reasoning abilities remains a subject of intense debate within
the scientific community. Some studies, such as [1, 11, 46], argue that
LLMs often simulate reasoning in constrained domains by leverag-
ing statistical patterns in the data, allowing them to solve reasoning
tasks without truly “understanding” them.

As a result, there has been a growing interest in studying LLMs
using more rigorous and challenging tasks, such as those found in
automated planning. Solving automated planning tasks involves un-
derstanding complex relationships between entities and objects, de-
termining when actions can be executed, comprehending their con-
sequences, and organizing actions to achieve a specific goal. These
capabilities are interesting not only from a theoretical point of view
but they could lead to an increase of efficiency, speed and quality with
respect to the systems already available. Moreover, although LLMs
(like all machine learning models) do not offer formal guarantees
of always providing a correct solution, they hold the potential for
integration with traditional planners to enhance performance. This
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approach mirrors existing efforts where machine learning systems
calculate heuristics that are subsequently used by planners [16, 32],
or where deep neural networks are applied for generalized planning
[38] and goal recognition [3].

In recent years, several studies have explored the application of
LLMs in automated planning [25, 33, 34, 40]. Despite the common
goal, these studies vary in several key aspects, such as the LLM they
consider and how that model is used: whether it is exploited through
zero-shot or few-shot prompting [44], with a Chain-of-Thought [45],
through a more complex fine-tuning process [25], or even training a
GPT model specifically for planning [31]. Most notably, the results
obtained, how they were evaluated, and the conclusions that can be
drawn from them differ significantly. While the authors of [40] claim
that “LLMs still can’t plan”, more promising results were obtained
by [10, 31].

This paper aims to review and survey these studies, offering guide-
lines to contextualize their findings and highlighting their similarities
and differences. We also discuss the methodologies used for evalua-
tion and the achieved results. Finally, we examine the primary chal-
lenges and future directions in this emerging field, considering per-
spectives from both automated planning and deep learning.

2 Background
In this section, we provide an overview and the background on Large
Language Models and Automated Planning.

2.1 Transformer-based models and LLMs

In 2017, Vaswani et al. propose a deep learning architecture called
Transformer [43]. Although it was originally conceived for ma-
chine translation, in the following years Transformer-based archi-
tecture (such as GPT) became the state-of-the-art in most Natural
Language Processing (NLP) tasks.

A transformer is made by two main parts: the Encoder, which
converts a text sequence into an embedded representation, and the
Decoder, which exploits the embedded representation in an auto-
regressive procedure to generate the translated sentence iteratively
word by word. Both these parts are made by a stack of several layers
(for instance, 12 in the original Transformer, 96 for GPT-3). A trans-
former processes text sequences first by separating them into smaller
units called tokens (words or parts of words). Different NLP models
use different tokenization methods and algorithms, such as Byte-Pair
Encoding and WordPiece. After tokenization, an embedding layer
converts each token into a corresponding real-valued vector. There-
fore, an input text is transformed into a sequence of vectors.

The most important component in the Transformer architecture is
the self-attention mechanism introduced in [43]. Intuitively, the self-



attention makes it possible to “pay attention” to different parts of the
sentence and to incorporate this information into the embedded rep-
resentation of each token. More formally, first the model projects the
embedded representation of each word E into three new representa-
tions called key (K), query (Q) and value (V ) by multiplying it with
three weight matrices Wk, Wq and Wv . The new representation Z,
is then calculated as Z = softmax(QKT√

dk
)V , where dk is the size

of the embedded representation. Transformer architectures combine
several parallel attention mechanisms (in the so called Multi-Head
Attention) with feed-forward neural layers and residual connections
across all the encoding and decoding layers.

The works in [4] and [27] derived two models based on the two
main parts of the Transformer architecture: Bidirectional Encoder
Representations from Transformers (BERT), which is based on
the Encoder, [4], and Generative Pre-trained Transformer (GPT)
[27], which is based on the Decoder. BERT, as other Encoder-based
models, is typically trained with Masked Language Modeling, i.e. by
masking several words in input and having the model predict them.
In contrast, GPT (which is the most famous Decoder-based model)
is trained to generate text starting from an initial textual prefix. This
procedure is also called Causal Language Modeling.

Training, Fine-tuning and Prompting Transformer-based mod-
els are typically pre-trained on a large corpora of unlabeled text to
understand and generate language, enabling them to acquire vast
knowledge. These models are referred to as pre-trained language
models. Due to their scale, often comprising billions of parameters,
they are also known as large language models (LLMs).

Pre-trained LLM’s capabilities can be further enhanced by refin-
ing them on a smaller, task-specific dataset through a process called
fine-tuning. Fine-tuning enables the model to specialize its general
knowledge and better manage the complexities of a specific task.
This is typically performed by attaching a simple feed-forward neu-
ral network to the model. This neural network is devoted to solving
the given task and during its training the LLM weights are updated
accordingly. Moreover, the performance of LLMs can be improved
through the instruction tuning process, which also exploits reinforce-
ment learning and human feedback[22]. Alternatively, it is possible
to train a language model from scratch in order to perform a specific
task [2]. However, this comes with the limitation that the model is
restricted to perform only the specific task it was trained for, lacking
the wide-ranging knowledge that pre-trained LLMs possess.

For Decoder-based models, and in particular GPT-3 and GPT-4
models, users can interact with LLMs by asking something in nat-
ural language and receiving the answer provided by the model. The
request made to the model is typically called prompt and the over-
all process of interacting with the LLM in different ways is called
prompt engineering [20]. More specifically, there are three main
prompting approaches:

• Zero-Shot, in which the LLM is asked something without any
examples;

• Few-Shot, in which the LLM is provided with some examples
which can be used for understanding a more general strategy to
address the user’s request;

• Chain-of-Thought, in which the LLM is provided with a prompt
that encourages a more refined inference process requiring mul-
tiple intermediate steps, which may correct mistakes and provide
useful information progressively.

2.2 Classical Planning

We assume that the reader is familiar with the standard planning
language PDDL [7] for representing deterministic, fully observable
planning problems.

A classical planning task is a pair P = (D, I) where D is a plan-
ning domain and I is a planning problem. The planning domain D
contains a set of predicate symbols p and a set of action schemas
with preconditions and effects given by atoms p(x1, ..., xk) where
each xi is an argument of the schema. The problem instance is a tu-
ple I = (O, Init,Goal) where O is a (finite) set of objects names ci,
and Init and Goal are sets of ground atoms p(c1, ..., ck) represent-
ing the initial state and the goal of the problem. A classical problem
P = (D, I) encodes a state model S(P ) = (S, s0, SG, Act, A, f)
where each state s ∈ S is a set of ground atoms from P , s0 is the ini-
tial state Init, SG is the set of goal states s ∈ S such that Goal ⊆ s,
Act is the set of ground actions in P , A(s) is the set of ground actions
whose preconditions are true in s, and f is the transition function so
that f(a, s) for a ∈ A(s) represents the next state resulting from ap-
plying action a to state s. An action sequence a0, ..., an is applicable
in P if ai ∈ A(si) and si+1 = f(ai, si), for i = 0, ..., n, and it is a
plan if sn+1 ∈ SG. The cost of a plan is assumed to be given by its
length, and a plan is optimal if there is no shorter plan.

3 Literature selection

We conducted a comprehensive survey of the existing literature to
explore the recent trend of using language models as tools for au-
tomated plan generation. This research identified 18 published pa-
pers that present different approaches to leverage language models
for plan generation within automated planning. Our search spanned
multiple academic databases, conferences, and journals, using key-
words such as LLM in planning, Reasoning with LLM, Heuristics
with LM, and Transformer, among others. Over the past three years,
most of the papers we reviewed have been presented at prominent
conferences in artificial intelligence (IJCAI, AAAI), deep learning
(NIPS, ICML, EMNLP), automated planning (ICAPS), and robotics
(ICRA) highlighting the growing interest in LLMs and their poten-
tial reasoning capabilities in this field. From the initial pool of results,
our selection was driven by the currently available evidence on the
significance of the works following two criteria:

(i) Peer-reviewed publications: We prioritized papers that have un-
dergone rigorous peer review, ensuring that they have been critically
evaluated and recognized as valuable contributions by experts in the
field. Many of these works are published in top-tier conferences,
where the acceptance process is highly competitive.

(ii) Citation impact: While we acknowledge that citation count
alone does not determine the quality of a work, it does serve as an
indicator of its consideration in the community. We included works
that have gained substantial citations (≥ 20 citations), even if they
had not been peer-reviewed.

With respect to the general survey presented in [26], we carefully
examined these works and selected the studies that specifically ad-
dress the use of LLMs for plan generation only. Therefore, we are
able to provide a much more in-depth analysis of LLM-based plan-
ning methods according to their input-output type, their procedures
and takeaways, and how they are integrated with symbolic tools.



4 Overview of LLM-based methods for Generating
Plans

First, we present a general description of the claims and contributions
from the articles we reviewed.

A significant line of work in the examined literature concerns the
prompting capabilities of pre-trained LLMs in terms of reasoning
and planning without external validation. [40] analyzed GPT-3, and
proposed a benchmark to address these experiments in a thorough
way [41]. In these works, planning problems are provided to an LLM
(in the form of natural language or PDDL), and the study focuses on
evaluating their behaviour under different conditions and prompts.
As summed up in [40], the takeaway of these works is that LLMs by
themselves cannot solve planning tasks.

Nonetheless, several studies have attempted to leverage the basic
reasoning capabilities of LLMs and to refine them for planning tasks
in more sophisticated ways. These approaches include using chain-
of-thought prompting combined with LLM-based validators [35] and
symbolic validators [8, 15, 36, 47] or integrating search algorithms
and planners [9, 19, 34, 42]. Another interesting approach is pre-
sented in [33], in which GPT-4 is used to generate Python programs
that can solve various planning problems in the same domain. The
results and the conclusions across these studies vary significantly.
Some works express optimism about LLMs’ potential in planning,
such as [9, 33, 47], while others, like [15], offer a more cautious and
pessimistic outlook on their effectiveness in these tasks.

Most of the studies mentioned above focus on closed-source, pre-
trained models like GPT-3.5 and GPT-4, which have gained signif-
icant attention due to their high relevance and commercial success.
However, a major limitation of using such models is the challenge of
adapting them to specific tasks like automated planning. To address
this, several studies have fine-tuned or even trained from scratch
smaller Transformer-based models, aiming to create specialized lan-
guage models tailored to solving planning tasks. One of the first spe-
cialized models is Plansformer [25], which utilizes a fine-tuned T5
model [28] and generates a corresponding solution plan given a for-
malized planning problem in PDDL. PlanGPT [31] achieved better
results by training a GPT-2 model from scratch, and integrating a
validator [30] and a planner [39]. A more complex configuration has
been studied in [10] by using three different Language Models to
generate and evaluate actions. Another interesting approach is pre-
sented in [18], in which the authors train a Transformer to emulate
the A* algorithm. Finally, the works in [12] focuses on generating
valid actions and heuristic values with LLMs.

In the following sections, we propose additional categorizations
of these works, examining key aspects such as their input and output,
how they utilize LLMs, what LLMs they used, and whether they in-
corporate validators or planners into their analyses. For clarity of the
pictures, in Figures 1,2 and 3 we named the considered papers with
the first three letters of the first author’s surname, followed by the
last two digits of the publication year. For instance, [8] is reported as
[GUA23].

5 LLM Procedures to Solve Planning Problems

In this section, we provide a more detailed description on how LLMs
are exploited to solve planning problems. First, we discuss their input
and output. Next, we analyze the procedures used for interacting with
the LLM and the results.

Figure 1: Visualization of the input categories (on the x-axis) and
output categories (on the y-axis) of the considered LLM approaches
for automated planning. Each work is identified by the first three
letters of the first author’s surname, followed by the last two digits of
the publication year. NL stands for Natural Language, Heur stands
for Heuristics.

5.1 Input and Output

As illustrated on the x-axis of Figure 1, there are three main ways to
provide an automated planning problem as input to a LLM: the first is
using Natural Language (NL), typically English without an explicit
logical formalism; the second is using PDDL; the third (Hybrid)
is through a combination of PDDL and prompts based on natural
language.

More specifically, the approaches based on Natural Language
[40, 42] translate a PDDL domain and a specific problem into a se-
ries of simple sentences understandable by a LLM using a custom
domain specific translator. Other approaches, such as [25, 31, 39],
work directly with PDDL, focusing on processing formalized plan-
ning problems based on their logical structure. Hybrid approaches
typically use the PDDL formalism combined with natural language
to interact with the model via external verifiers and assist the gener-
ation [8, 33, 36]. Notably, the work by Silver et al. employs a hybrid
input strategy, where the system receives not only PDDL but also
code fragments and error traces.

In terms of the output generated by the LLM, as shown on the
y-axis of Figure 1, the works we considered can be divided into
three main categories. The first is composed by works (such as
[15, 36, 42]) in which the LLM generates an answer written in natu-
ral language (NL) from which a PDDL plan is derived. Similarly, the
second category is composed by works in which the LLM directly
generates a valid sequence of actions to solve problem in PDDL,
such as [8, 19]. A notable alternative approach is presented in [33],
where the LLM generates a Python program that includes a policy
designed to solve the planning problem writing the plan in PDDL. In



Figure 2: Venn Diagram of the different ways to exploit LLMs for
generating plans: Zero and Few-Shot Prompting, in blue, Training
and Fine-Tuning, in red and Chain-of-Thought, in green.

the third category, called Heuristics in Figure 1, LLMs are used to
compute heuristic values, which can then be combined with search
algorithms to generate valid plans. For instance, in [12] the authors
train the decoder component of a T5 model to predict heuristic val-
ues, while Hao et al. [9] calculates heuristic values by combining the
action’s likelihood with the LLM’s confidence. A hybrid approach
is adopted by Hazra, Martires, and De Raedt [10], where knowledge
learned by two LLMs, focused on action applicability and best ac-
tion selection, guides a beam search carried out by a third pre-trained
LLM, integrating multiple models to enhance the planning process.

5.2 Procedures and Takeaways

Another critical aspect of the considered works is how LLMs are ex-
ploited to solve planning problems, and the results they obtained. As
we show in Figure 2, we identified three main strategies attempted:
Zero and Few-Shot prompting, Chain-of-thought (CoT) prompt-
ing, and Fine-tuning and Training.

In the studies belonging to the first category, the authors analyze
the reasoning capabilities of pre-trained LLMs using a prompting
setting without external validation. They show that LLMs possess
poor planning abilities, even when handling simple problems, as they
struggle to reason about action applicability and its effects, gener-
ating invalid plans. These capabilities do not increase by providing
examples [40].

For the second category, some researches have proposed enhanc-
ing LLM capabilities by making them process the problem step-by-
step, as in the Chain-of-Thought, or even combining them with rea-
soning tools, for instance the VAL validator [13] or a Python inter-
preter [33, 36]. Instead, the work in [35] utilizes another LLM in
a sort of self-verification tool to detect and correct errors. The use
of external validators has yielded mixed results. The approach has
produced excellent outcomes in [33, 47]. However, in other studies,
like [8, 34, 35], the integration of validation tools led to only modest
improvements.

Finally, considering the studies of the third category, some authors

Figure 3: Venn Diagram of the integration with Validators (reported
in orange) and Planners (reported in blue). The approaches that do
not integrate with either a planner or a validator are reported outside
the two sets.

fine-tune and train smaller Transformer-based models on planning
datasets to instruct these models how to generate a plan. This marks
an important difference between the other two categories. In fact
these works, instead of relying solely on the knowledge previously
gained by a pre-trained LLM, try to inject some domain-specific
planning knowledge into them. Among these works, the creators
of Plansformer [23, 24, 25] fine-tuned a Transformer-base model
(called CodeT5 [28]) trained on code of several programming lan-
guage. The results show that the fine-tuning significantly improves
the planning capabilities of the model, up to a coverage higher than
80% across 6 planning domains.

Instead of fine-tuning an LLM, in [30, 31, 39], a new GPT model,
called PlanGPT, is trained from scratch to learn a general policy
to solve many planning instances in a given domain. Exploiting a
large amount of training data (about 63000 planning problems per
domain), PlanGPT obtains impressive results in terms of coverage
(more than 90% on IPC problems in Blocksworld, Driverlog, Floor-
tile, Visitall and Zenotravel).

6 Integration with Validators and Planners

This section provides an overview of how the considered studies inte-
grate LLMs with symbolic tools, in particular with reasoning-based
validators, such as VAL [13] and planners. These three forms (No
Integration, Validator and Planner) are shown in Figure 3.

Analyzing the approaches which exploit validators, the work in [8]
integrates the VAL validator [13] during the LLM-based plan gener-
ation, reporting poor results. Conversely, the study in [47] achieves
improved coverage over standalone LLM performance on various
benchmarks using the same approach. Additionally, [33] combines
VAL and Python validators within the LLM workflow to enhance
program synthesis and address domain-specific planning tasks.

Among the approaches that integrate LLMs with planners, three
works leverage a planner to modify a candidate plan, which may be
valid or invalid, generated by a LLM [34, 39, 42]. The core idea be-
hind these works is that even an imperfect, LLM-generated plan can
provide helpful information that a planner can leverage to enhance
performance. More specifically, in [42], a pre-trained GPT model on
a general text corpus is combined with the LPG planner [5]. Differ-
ently, the work in [34] employs the plan resulting from the LLM to
initialize the queue of expanded nodes in Greedy Best First Search
(GBFS), using the LLM-generated candidates as a starting point for
the search process. These two studies demonstrate that combining



neural-based LLMs with symbolic planning approaches improves
overall performance over LLMs alone, and reduces the search space
compared to planners alone. However, these approaches are slower
than using satisficing planners such as LPG [5] and LAMA [29].

Considering the approaches that focus on computing heuristics
with LLMs rather than generating plans directly, we can see also
a more in-depth integration among LLMs and search-based tech-
niques. The most notable papers are [12] and [9], which combine
LLM-derived heuristics with Greedy Best First Search (GBFS) and
Monte Carlo Tree Search (MCTS), respectively. In these works, start-
ing from the current state s of a planning problem, the LLM assigns
a heuristic value to the next states derived from A(s). This process
guides the search by prioritizing the expansion of states with the
highest heuristic values until all goals are satisfied. Although both
these works share a similar idea, it is important to note that the scor-
ing function in [12] derives directly from the actions which the LLM
associates to a higher probability. A more complex approach is pre-
sented in [9] which combines the probabilities of actions and states
calculated by the LLM with a task-specific heuristic to obtain the fi-
nal heuristic value. However, computing such heuristics is computa-
tionally very expensive, as an LLM must be prompted for each new
applicable state. Moreover, there is no in-depth study of how these
approaches compare to heuristics based on reasoning and planners.

7 Planning Capabilities Evaluation

Figure 4: Types of evaluation conducted by the considered studies,
in terms of Valid Plans Generations, Optimal Plans Generation, and
whether an experiment with randomized names (Names Randomiza-
tion) or with plans outside the training/fine-tuning distribution (Plan
Length Generalization) is present . For each column, the blue bar rep-
resents the number of papers which perform the actual test, while the
orange bar represents the number of papers which does not perform
the test.

Among the works we considered in this study, there is a great va-
riety in how the LLMs are evaluated in terms of their planning capa-
bilities. While establishing a standardized evaluation method across
these systems, which vary significantly in architectures and setups (as
explained in the previous sections), is not the main scope of this pa-
per, we can identify several common evaluation points shared across
the studies.

Figure 4 reports an overview of the main features commonly eval-
uated among the considered works. The most important aspect is un-

doubtedly whether they are able to generate valid plans. This is eval-
uated in terms of coverage, i.e. the percentage of planning problems
correctly solved by the LLM-based technique proposed by the paper.
In fact, as expected, all the papers assess whether the proposed ar-
chitectures can generate a valid plan (i.e. that does not violate any
action precondition and reaches all the problem goals). However,
several studies also verify whether the solution provided is optimal
[10, 24, 40, 41] or perform a more general evaluation of the plan qual-
ity, by comparing the quality of the generated plan with the optimal
one [40, 41]. Interestingly, to improve the quality of the generated
plans, the works by [24] and [10] proposed neural language models
specifically fine-tuned with optimal plans.

Another interesting experiment performed in the considered works
is evaluating the impact of object and action names in PDDL do-
mains and problems on the models’ performance [24, 34, 42]. In
most benchmark domains, the names used for objects and actions
are derived from English words, which the LLMs likely encountered
during their training. This evaluation aims to strip away the models’
reliance on their linguistic knowledge to assess purely their reason-
ing ability to generate a plan. In [34], the objects and actions names
are replaced by English words with different meanings. The work
in [41, 42] tests the effects of randomization by using both random
strings and different words. The results indicate that all tested LLMs
have a substantial drop in performance, producing almost no valid
plan.

Considering the works that fine-tuned or even trained LLMs from
scratch, those in [31, 39] assessed only the plan generation capabil-
ity on problems matching the complexity level of the training set.
Moreover, they do not test the effects of randomization and word
substitution. In contrast, Plansformer [24] testes both randomization
and used problem with a small increase in the number of objects than
those seen during training. Both tests lead to a performance decline,
with Plansformer solving only a small portion of the tested problems.
Comparable generalization limitations were also observed in Say-
CanPay [10]. More promising results on generalization are shown in
[12], where the proposed hybrid architecture manages to generalize
to more complex problems that were not seen during training.

8 Discussion and Conclusions
We have analyzed the main characteristics of the works concerning
the relationship among LLMs and automated planning, identifying
various approaches for testing and developing new models. Our brief
survey and categorization of these works highlight several differ-
ences in terms of input and output (typically, text versus PDDL),
exploitation of pre-trained models (prompting, fine-tuning, or even
training from scratch), integration of a planner or a plan validator. In
the following, we offer some conclusions and a discussion to place
the works we analyzed within a broader context.

8.1 Are LLMs Capable of Planning?

In order to understand whether LLMs can be used effectively as plan-
ners, it is important to understand the most crucial planners’ proper-
ties and how they align with LLMs. Three fundamental properties in
planning are completeness, soundness and domain independence. A
planner is complete if it always finds a solution when a solution ex-
ists, and it is sound if the generated plans are guaranteed to be valid
solutions. The models presented in the reviewed works meet at most
one of these properties. For instance, approaches that exploit zero-
shot and few-shot prompting on pre-trained LLMs, such as GPT-3,



are neither sound nor complete. Moreover, as shown in [34, 40, 42],
they have limited performance in terms of problem coverage.

Considering works that train or fine-tune an LLM (such as [10,
23]), they can be considered sound for a limited set of instances
if their solution is authenticated by a validator. However, these ap-
proaches are not complete. Since they are trained on a finite vocab-
ulary that includes a specific number of objects, the models are con-
strained by this vocabulary and extending the model’s capability to
handle a greater number of objects would require a complete retrain-
ing of the system. Clearly, this limits the flexibility and generalization
capabilities of LLMs beyond the specific instances they were trained
on. Moreover, all these approaches have been realised for specific
domains, and therefore they are not domain independent. Finally, the
preliminary results from these fine-tuned or trained LLMs suggest
they struggle with solving more complex problems, especially those
that exceed the complexity of the tasks used during training [24].
Consequently, while these models can be helpful within their trained
scope, they cannot fully generalize to a broader range of planning
tasks without significant adjustments.

The highlighted limitations of LLMs in planning can be consid-
ered as part of a bigger problem that is currently being addressed
by the research community, called the “stochastic parrot” problem
[1, 11]. This problem posits that LLMs only mimic human language
without possessing relevant reasoning capabilities and a real “under-
standing” of semantics. In planning, the stochastic parrot problem
would justify the identified limitations and the scarce generalization
performance that the LLMs (in particular, the trained and fine-tuned
ones) achieve. Consider for instance the generated plans reported in
[40] for the Blocksworld domain. We can see that LLMs can gener-
ate plausible-sound solutions, in which the generated plan consists of
stacking and unstacking blocks. However, they result in invalid plans.
Similar results can be seen in [31, 33]. In other words, these results
could suggest that LLMs may parrot back learnt patterns, without a
proper understanding of complex reasoning tasks, such as planning.
However, these aspects are widely debated in the scientific commu-
nity, and today there is no definitive conclusion regarding the true
nature of LLMs capabilities or the best way to address these chal-
lenges.

8.2 How Can We Have a Fair Evaluation?

In the evaluation process, typically the ability of LLMs to generate
valid plans is assessed. Additionally, some works test generation ro-
bustness in terms of names and actions randomization, and problem
complexity. However, a contention point among the considered arti-
cles concerns the datasets and benchmarks employed.

A first benchmark, PlanBench, was proposed in [41], where the
authors introduce 600 hand-crafted problems in natural language for
the Blocksworld and Logistics domains in order to test the planning
capabilities of LLMs, even with respect to several forms of random-
izations of names and fluents. However, this benchmark has not been
adopted in other works yet. Furthermore, it covers only two domains,
which limits its ability to represent the full complexity of automated
planning tasks. Other planning benchmarks can be obtained from the
2023 International Planning Competitions (IPC) [37], which includes
a broader range of domains but offers a limited number of problems
per domain. While these problems are sufficient to test symbolic
planners, they are often too few to evaluate deep learning systems
effectively, which typically require large and diverse test sets (such
as the 20% of the overall dataset, which is typically built of thou-
sands of instances) with problems of different types and sizes. This

is particularly relevant given the importance of ensuring that a deep
learning model (such as a LLM) has genuinely learned to solve plan-
ning tasks, rather than just memorizing solutions from the training
data. One of the first attempts to solve this problem appears in [31],
where the authors published a dataset containing 5000 problems for
eight planning domains with a complexity similar to the IPC setup.

Another factor that needs to be evaluated is LLMs’ capability to
generate correct plans following order permutations of the fluents
in the initial state and the goals or name randomization (of objects,
fluents, and actions). This capability is fundamental because the rea-
soning process should be independent of the order of its fluents or
name permutation, meaning that the same logical plan should be
generated regardless of these variations. For example, considering
the Blocksworld domain, the LLM should produce the same plan
whether an object named BlockA is renamed to BlockY or if the
fluents describing the initial state or goal are presented in a different
order.

However, it is important to note that the knowledge of LLMs
trained on text has been acquired from processing documents that re-
flect and describe the real world. Therefore, their ability to solve, for
instance, a logistic problem stems not only from the logical structure
of the problem, but also from understanding its main components,
such as what is a plane object. Randomizing or replacing these mean-
ingful object names with gibberish, while keeping the formal struc-
ture of the problem, could significantly impair the LLM’s capabili-
ties. The model may rely on some associations between real-world
entities, learned during its pre-training, and their roles in planning
contexts. By removing these associations, the LLM could struggle
to generate a correct plan, as it would no longer recognize the ob-
jects or actions in a way that reflects their real-world functions. This
behaviour contrasts sharply with the reasoning process of traditional
planners. Unlike LLMs, planners are designed to be unaffected by
word randomization because they treat words as mere placeholders
without any intrinsic meaning. Planners rely solely on the logical
relationships and formal structures defined by the problem specifi-
cation, not on any semantic understanding of the objects or actions
names.

Finally, an important aspect to assess is how LLMs handle com-
plex planning problems, particularly those involving an increased
numbers of objects, potential dead ends, and a high branching factor
of fluents and actions within the domain. For training and fine-tuning
approaches, where models are specifically trained on problems of a
certain complexity, it is crucial to determine whether these models
can generalize to more complex problems (in terms of number of
objects and a higher branching factor) than those used during train-
ing. Suppose an LLM can solve problems beyond the complexity
of its training dataset, in that case, we have clear evidence that the
model has learned generalizable reasoning rather than merely mem-
orizing solutions from the training data. However, if the model’s per-
formance deteriorates when faced with more complex problems, this
indicates that the training process has limited generalization proper-
ties and that the LLM may only be effective within a narrow range of
specific problems [24].

8.3 Limitations

It is important to emphasize that all fine-tuning and training mod-
els are domain-specific. Even the current best-performing architec-
ture, PlanGPT [31], was implemented and tested by training several
domain-specific models, each with its vocabulary and dataset. These
models can learn a general policy and, therefore, solve many plan-



ning problems in a specific domain, but need different training for
different domains. Therefore, their results should be analyzed and
understood carefully to detect whether they demonstrate some forms
of reasoning or, instead, learn some specific statistical patterns from
the training data. In contrast, general-purpose LLMs trained on text
are not specifically built for any particular domain and should be
more robust. However, to date, they are not able to plan even if they
are trained with massive datasets and refined with human feedback
[41].

Moreover, the training and evaluation of these architectures re-
quire huge computational resources and, as shown in [34], they can
be slower than classical planners such as LAMA. These issues, along
with the reliance on world knowledge (often expressed in PDDL) for
approaches that use chain-of-thought reasoning, external validators,
or human experts, leave open the question of whether in practice it is
convenient to use LLMs to planning tasks, given that current domain
independent (classical) planners are already highly efficient and op-
timized. An interesting direction for future work is combining these
two technologies, taking the best from both worlds [9, 12, 17, 39].
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