
A domain-specific language for NeSy
focussing on symbolic knowledge injection

Mattia Matteinia, Giovanni Ciattoa,*, Matteo Magninia, Emre Kurub, Reyhan Aydoğanb and Andrea Omicinia

aDepartment of Computer Science and Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
bÖzyeğin University: Istanbul, İstanbul, Turkey

ORCID (Mattia Matteini): https://orcid.org/0009-0007-4474-8431, ORCID (Giovanni Ciatto):
https://orcid.org/0000-0002-1841-8996, ORCID (Matteo Magnini): https://orcid.org/0000-0001-9990-420X,

ORCID (Emre Kuru): https://orcid.org/0009-0007-6130-6272, ORCID (Reyhan Aydoğan):
https://orcid.org/0000-0002-5260-9999, ORCID (Andrea Omicini): https://orcid.org/0000-0002-6655-3869

Abstract. In neuro-symbolic AI (NeSy), integrating symbolic lan-
guages – typically subsets of first-order logic (FOL) –, with neural
networks (NNs) serves goals like enhancing symbolic processing, ex-
tending reasoning with pattern recognition, and guiding neural learn-
ing with symbolic knowledge—a.k.a. symbolic knowledge injection
(SKI). Despite its utility, FOL’s expressiveness poses challenges to
SKI algorithms, and its general-purpose nature complicates use for
non-experts. We propose SKI-lang, a domain-specific language for
SKI that balances practicality, clear semantics, and expressiveness–
tractability trade-offs. SKI-lang simplifies symbolic specification,
serves as a unified interface for diverse SKI approaches, and allows
for automating benchmarks from NeSy literature. We discuss the de-
sign choices behind SKI-lang and its implementation, and demon-
strate its effectiveness and versatility through a few case studies.

1 Introduction

In the context of neuro-symbolic AI (NeSy) [4], many approaches
have been proposed to integrate (some sort) for symbolic language
– most commonly, a subset of first-order logic (FOL) – with neural
networks (NNs) [5], to pursue disparate goals, including, but not lim-
ited to: (i) speeding up symbolic processing via neural computation,
(ii) extending symbolic reasoning with pattern-recognition capabil-
ities, or (iii) controlling the learning process of NNs with symbolic
knowledge.

The latter goal in particular is also known into the literature as
symbolic knowledge injection (SKI) [1]. SKI has been addressed by
several works, proposing as many algorithms, each one focussing
on a different subset of FOL, ranging from propositional logic to
Datalog [2] and beyond—up to the full power of FOL itself.

However, the very choice of the FOL syntax (and its subsets) as
the target symbolic language has never been questioned, despite pos-
ing several challenges to SKI algorithms, because of its expressive-
ness. To complicate the matter, we observe that writing a symbolic
specification to be injected via general-purpose and expressive lan-
guages like FOL, Prolog [10], or Datalog, may often be cumbersome
for non-experts in symbolic reasoning. In fact, a modelling effort is
required to translate the domain knowledge into the target symbolic

∗ Corresponding Author. Email: giovanni.ciatto@unibo.it

language, and we argue that such modelling effort could be reduced
by using a domain-specific language (DSL).

Accordingly, in this paper, we propose SKI-lang, a domain-
specific language for SKI, which aims at being practical for non-
experts in symbolic reasoning, while still retaining a clear semantics
and a good expressiveness–tractability trade-off [11]. In particular,
we discuss the engineering choices behind the design of SKI-lang,
and we show how it can act as a common interface for different
benchmarks from the NeSy literature. Most notably, the main goal
of this paper is to motivate the need for an ad-hoc language for SKI
– complementary to FOL – and to propose one particular syntacti-
cal reification for such a language, tailored on the current state of
practice in machine learning (ML) and NeSy. The implementation
is preliminary, and we do not claim completeness or generality. In-
stead, the paper reports about our proof-of-concept implementation
of SKI-lang, and provides a roadmap for future work.

2 Background

NeSy has emerged as a significant area of research within artificial
intelligence (AI), aiming to integrate symbolic reasoning with NNs
learning to leverage the strengths of both symbolic and connectionist
approaches. Typically, symbolic – most commonly, logic – languages
are integrated to enhance NNs by enabling structured reasoning, in-
terpretability, and explicit knowledge representation.

Information representation within these systems often combines
localist (symbol-based) and distributed (sub-symbolic/neural-based)
approaches [23], providing flexible and effective knowledge repre-
sentation and data processing capabilities. There, training processes
integrate neural-based inductive learning from data with symbolic
reasoning approaches, allowing systems to learn effectively even
from smaller datasets due to explicit symbolic knowledge represen-
tation.

From symbolic AI, NeSy approaches may inherit various reason-
ing capabilities, such as: deductive, inductive, abductive, common-
sense, and combinatorial reasoning [4]. Yet, decision-making pro-
cesses in these systems combine intuitive, heuristic neural process-
ing with deliberate symbolic reasoning, closely mimicking human
cognitive patterns.

https://orcid.org/0009-0007-4474-8431
https://orcid.org/0000-0002-1841-8996
https://orcid.org/0000-0001-9990-420X
https://orcid.org/0009-0007-6130-6272
https://orcid.org/0000-0002-5260-9999
https://orcid.org/0000-0002-6655-3869

Lastly, logic utilised in NeSy ranges from propositional to higher-
order logic, offering extensive capabilities for knowledge representa-
tion and reasoning by embedding logical frameworks directly within
neural architectures, thus enabling complex logical inferences.

2.1 Symbolic knowledge injection (SKI)

SKI refers to the injection of symbolic knowledge – expressed in for-
mal logic – into sub-symbolic predictors like NNs. As defined by [5],
SKI is “any algorithmic procedure affecting how sub-symbolic pre-
dictors draw their inferences in such a way that predictions are either
computed as a function of, or made consistent with, some given sym-
bolic knowledge”.

SKI aims to improve model interpretability, robustness, and
controllability by incorporating structured, human-intelligible prior
knowledge into the learning process. Three major SKI strategies are
recognised in the literature: structuring, guided learning, and embed-
ding [5]. Structuring: the architecture of the predictor is built or mod-
ified to reflect the symbolic knowledge structure, e.g., via encoding
rules directly as modules in a NN. Guided learning (a.k.a. Constrain-
ing): symbolic constraints are added to the loss function, guiding
learning via soft penalties or hard constraints. Embedding: symbolic
knowledge is converted into continuous representations that are fed
into the predictor as part of the input.

SKI methods vary widely with respect to the kind of logic lan-
guage they support. These range from propositional logic, to FOL
(used in LTN [3] and LNN [21]), to probabilistic or Horn logics (used
in DeepProbLog [16], NTP [20]), to Datalog (as in Scallop [12]).

Related works. Neural theorem proving (NTP) [20] implements a
differentiable version of backward chaining using Horn logic. Vari-
ables are grounded via soft unification in embedding space, blending
guided learning with embedding strategies. DeepProbLog [16] ex-
tends probabilistic Prolog with neural predicates and performs SKI
via structuring. The logic program controls the inference pipeline,
and variables are grounded via probabilistic backward chaining over
dataset constants. Neuro-symbolic forward chaining (NSFR) [22]
performs forward-chaining symbolic reasoning over probabilistic
ground atoms. It structures symbolic inference within neural com-
putation, and performs grounding by enumerating atoms and chain-
ing over them. Logic tensor networks (LTN) [3] uses fuzzy FOL and
injects rules via differentiable real-valued semantics that act as soft
constraints in the loss function of NNs which are structured to reflect
the symbolic knowledge. Therefore, this method combines the ‘con-
straining’ and ‘structuring’ strategies. Knowledge-enhanced neural
networks (KENN) [6] works in propositional logic and injects knowl-
edge through a knowledge enhancement layer added to a neural clas-
sifier. Rules are translated into differentiable adjustments applied
post-hoc to network outputs, realising guided learning. Logic neu-
ral networks (LNN) [21] encodes weighted FOL directly in network
structure. Symbolic formulas are embedded into the network via con-
fidence scores and differentiable logic gates. This combines structur-
ing with constrained learning. Hierarchical rule induction (HRI) [9]
learns logic programs from data using meta-rules, combining induc-
tive learning with differentiable logic. Grounding is achieved via
substitution over datasets and similarity in neural embedding space.
Knowledge Injection via Lambda Layer (KILL) [14] regularises NN
training with symbolic knowledge in stratified Datalog with nega-
tion. Knowledge Injection via Network Structuring (KINS) [15] in-
jects logic formulas, expressed in stratified Datalog with negation,
into NN by structuring additional layers that mimic the symbolic

knowledge. Scallop [12], supports Datalog-style programs over ten-
sors, offering differentiable symbolic reasoning. Grounding is done
via batched comprehension over input data, and symbolic rules are
enforced structurally. DeepLogic [7] uses structured neural logic op-
erators over tree-based FOL expressions. It applies structuring and
guided learning to learn logical forms jointly with perception.

2.2 About SKI Languages

In the realm of NeSy, the interplay between symbolic logic languages
and NN architectures introduces crucial considerations around ex-
pressivity, computational tractability, and usability—particularly
within ML workflows.

This discussion aims to reflect on these issues, emphasising the
challenges posed by different logic languages to SKI, the various
solutions adopted by existing methods, and ultimately addressing the
question of how these complexities relate practically to the everyday
tasks of data scientists and ML practitioners.

Expressivity vs. Tractability: A Spectrum. Symbolic languages
vary significantly in expressivity and computational complexity, fun-
damentally influencing their usability and suitability in ML contexts.

At the lower end of the expressivity spectrum lies propositional
logic, which provides simplicity and computational tractability. It al-
lows for straightforward symbolic-to-sub-symbolic translation and
integration into ML workflows, as seen in early and simpler ap-
proaches. However, propositional logic is limited to representing flat,
atomic statements about domain entities and lacks the capability to
generalise across instances using variables or quantifiers, limiting its
practical utility in more complex ML applications.

Conversely, FOL stands at the upper end of the expressivity spec-
trum, empowered by variables, quantifiers, unification, and logi-
cal inference mechanisms such as resolution. This language allows
for compact, intentional, and relational representations of knowl-
edge, which are powerful within symbolic reasoning frameworks.
Nonetheless, when integrating FOL into neural models – where
datasets form strict subsets of the Herbrand universe – complexities
emerge due to grounding (instantiation of variables), interpretation,
and computational overhead.

In particular, FOL’s expressive nature demands significant com-
putational resources and sophisticated tricks to effectively use it for
SKI. Common methods include: soft grounding, as utilised in dif-
ferentiable neural logic frameworks (e.g., LTN [3]); probabilistic
backward chaining, exemplified by systems like DeepProbLog [16];
and embedding-based grounding, such as the soft unification in
NTP [20]. These methods essentially mitigate the complexity by
translating symbolic structures into computationally manageable,
differentiable forms.

Intermediate languages such as Horn clauses and Datalog – in-
cluding their stratified and negation-free variants –, strike a mid-
dle ground [13]. They simplify symbolic formulations through syn-
tactical constraints, enhancing computational tractability. However,
they still present challenges, particularly when recursive definitions
are involved, as recursion may lead to non-terminating grounding
processes—unless managed through smart techniques like: batched
grounding, as in Scallop’s (cf. [12]) implementation for Datalog
programs; or forward chaining with probabilistic atoms, such as in
NSFR [22]. These “tricks” prevent infinite computations by limit-
ing recursive expansions or bounding inference procedures through
practical heuristics.

Practical Usability. From a purely symbolic perspective, these
technical challenges offer deep theoretical interest, particularly
around the foundational study of neuro-symbolic integration. Nev-
ertheless, the critical question remains: are such complexities gen-
uinely necessary for practical ML tasks?

Practically speaking, data scientists typically resort to SKI when
raw data alone is insufficient for training robust ML models. This
insufficiency arises due to data scarcity, uneven data distribution, or
dataset bias—scenarios common in real-world applications such as
healthcare diagnostics, fairness-aware AI, or structured data inter-
pretation.

In these cases, symbolic knowledge becomes a complementary re-
source, enhancing model performance through structured constraints
and prior domain knowledge. Specifically, symbols in these contexts
are not referencing abstract entities but rather direct representations
of data instances, their features, and relational knowledge explicitly
linked to dataset columns and rows.

Along this line, SKI practitioners may just need a language that
allows them to express symbolic constraints or relations over the do-
main of the dataset at hand, simplifying the expression of declarative
statements which involve the dataset’s instances (and their compo-
nents), and features—rather than arbitrary Herbrand terms.

Moreover, as the (i) specification of the knowledge to be injected
and (ii) the hyperparameters of the learning and (iii) injections pro-
cesses are deeply intertwined, with a lot of back-and-forth between
the two, it is crucial to provide SKI practitioners with a unified lan-
guage to express both symbolic knowledge and SKI/ML workflows.
This would represent a significant advantage in terms of usability and
experimental setup time.

To address these concerns, in the next sections, we present SKI-
lang, and its design rationale, and we attempt to demonstrate its ef-
fectiveness and usability in ordinary ML tasks where SKI may apply.

2.3 Running Examples and Benchmarks

In the remainder of this paper, we rely on running examples taken
from three distinct SKI benchmarks, tailored onto as many ap-
plication domains, namely: handwritten digit recognition, fairness-
aware income prediction, and SKI-enhanced Poker hand classifica-
tion. Each benchmark demonstrates a different way to exploit SKI
and lets us showcase some feature of SKI-lang in real-world scenar-
ios.

The benchmarks differ in data format, learning objective, and sym-
bolic knowledge to be injected. We present them here as they will be
referenced multiple times in the following section.

Sum of MNIST Digits. This benchmark is based on the well-
known MNIST dataset1 of handwritten digits. The dataset consists
of 70,000 gray-scale 28 × 28 pixels images labelled with one of 10
digit classes. The goal is to train a neural classifier that predicts the
digit class of an image, but with an additional symbolic constraint:
when images are grouped in pairs, the sum of the true classes of each
pair must equal the sum of their predicted classes.

The symbolic constraint thus involves a global consistency condi-
tion across two independent input instances. This setting highlights
a key foundational challenge for SKI, namely how to enforce rela-
tional constraints across multiple inputs, especially when symbolic
information is not local to a single instance.

1 ‘MNIST’ Dataset on UCI Repository: https://doi.org/10.24432/C53K8Q

Fair Income Prediction. Based on the Adult (a.k.a. Census In-
come) dataset2, this benchmark addresses the problem of learning a
binary income predictor (above or below $50k) from demographic
and employment data. The dataset contains 48,842 tabular records
with 14 features including age, education, occupation, and
race. The learning task is binary classification over the income
field.

The symbolic knowledge to be injected encodes a fairness con-
straint: the predicted income should be independent of the sensitive
attribute race. This is commonly formalised as a statistical parity
requirement (a.k.a. demographic parity, cf. [8]). From a foundational
SKI perspective, this example highlights the challenge of injecting
distributional constraints—not over individual predictions but over
group-level statistics. The benchmark is also interesting because it
combines numerical and categorical features, making it a test case
for symbolic reasoning over mixed-type structured data.

SKI-enhanced Poker-Hand Classification. This benchmark in-
volves training a sub-symbolic classifier over a highly imbalanced
dataset of poker hands3. Each data instance encodes 5 playing cards
through 10 attributes (5 suits and 5 ranks), and is assigned one of 10
class labels corresponding to the type of hand (e.g., pair, flush, full
house, etc.).

The available symbolic knowledge consists of a rich set of crisp
logic rules that fully characterise each class. This makes the bench-
mark suitable for stress-testing SKI under conditions where symbolic
information is both precise and essential, due to the extreme class im-
balance and low data coverage. From a foundational standpoint, this
example poses challenges in terms of combining rule-based logic
(e.g., multiple conditions with dependencies and precedence) with
neural learning, and allows research on prioritised rule injection and
expressiveness–tractability trade-offs.

3 SKI-lang: A Practical Language for SKI

Here we introduce SKI-lang, a DSL for NeSy that is specifically de-
signed to make SKI practical for data scientists. SKI-lang is a declar-
ative language that allows users to express symbolic knowledge in a
way that is both intuitive and concise, tailoring that knowledge to the
data-related task at hand – for which a dataset is supposed to be avail-
able –, and training ML predictors accordingly—in such a way that,
at the end of training, they comply with the aforementioned symbolic
knowledge expressed in SKI-lang.

Accordingly, in this section, we first discuss the abstract design
criteria that guided our design of SKI-lang, and then we provide a
brief overview of its concrete syntax and the intended semantics.

3.1 Design Criteria

SKI-lang is designed to serve the purposes of a data scientist work-
ing on some supervised ML task of interest, for which a dataset is
available via a clear schema, as well as some background knowledge
that may be worth keeping into account when training ML predictors
for the task.

For the sake of simplicity – yet without loss of generality –, we de-
scribe the dataset as a table-like structure, where each row represents
an instance of the domain at hand, and each column represents a fea-
ture of the dataset. We assume that features come with mnemonic

2 ‘Adult’ Dataset on UCI: https://doi.org/10.24432/C5XW20
3 ‘Poker Hand’ Dataset on UCI: https://doi.org/10.24432/C5KW38

https://doi.org/10.24432/C53K8Q
https://doi.org/10.24432/C5XW20
https://doi.org/10.24432/C5KW38

names, whereas instances are represented by their row number. Fi-
nally, we assume that one feature is marked as the target feature w.r.t.
the supervised ML task at hand.

Under these assumptions, the core goals of SKI-lang are to provide
the data scientist with (G1) a convenient, concise, and expressive
syntax for expressing their background knowledge; as well as (G2)
a declarative syntax for specifying the ML workflow – including the
dataset schema, the predictors to be trained, and their hyperparam-
eters –, in such a way that SKI-lang is the only entry point for any
SKI-enhanced ML pipeline.

To address these goals, we design SKI-lang to satisfy the follow-
ing requirements, enumerated by Ri. The discussion is deliberately
abstract: please refer to section 3.2 for concrete syntactical examples.

Expressing the knowledge (G1). Firstly, and most importantly,
(R1) SKI-lang should allow expressing knowledge about the dataset
in symbolic form. More specifically, it should be possible to express
declarative statements involving: (i) references to one or more in-
stances from the dataset, (ii) references to one or more features from
the dataset, (iii) references to one or more features of the same in-
stance (iv) arbitrary constants; (v) named logic predicate definitions
over the items above; (vi) any algebraic or logical combination of
the items above. Such statements constitute the symbolic knowledge
specification to be injected.

Furthermore, to simplify the specification of common logic state-
ments, (R2) SKI-lang should support the import and usage of built-in
functions and predicates, aimed at keeping the symbolic specification
concise and declarative.

Finally, (R3) the language should be agnostic w.r.t. the particu-
lar sort of SKI approach and algorithm being used. In other words,
SKI-lang should be able to express symbolic knowledge in a way
that is independent to how it will be injected. In practice, this means
that SKI-lang should allow for (i) structuring the architecture of the
predictor out of the symbolic knowledge, (ii) constraining the loss
function of the predictor with symbolic knowledge, (iii) embedding
the symbolic knowledge into vectors that are fed into the predictor,
or (iv) any combination of the above; while (v) requiring minimal or
no changes to the specification.

Declaring the workflow (G2). To account for the declaration of
end-to-end SKI workflows where all relevant aspects of the process
are specified in a single place, SKI-lang should also support (R4)
the declaration or import of the ML predictor(s) subject to SKI, and
of the (R5) the dataset and data-schema to be used for training and
testing the predictors. Similarly, it should support (R6) the selection
of the SKI algorithm to be used, and (R7) the customisation of any
aspect related to the SKI-aware ML pipeline.

More precisely, requirement R4 prescribes that the predictor un-
dergoing SKI – be it a predictor to be loaded from a file, or a new
one to be trained from scratch –, should be declared in SKI-lang.
Declarations should specify any modelling aspect, there including:
the predictor family of choice (e.g., NNs, decision trees, etc.), its ac-
tual hyperparameters (e.g., number of layers, the number of neurons
per layer, the activation functions, etc.), and its mapping to symbolic
predicates. The latter, in particular, aims at declaring the interface
(name + arity) the ML predictor is offering to the symbolic realm.
This would allow SKI-lang users to reference the predictor in the
symbolic knowledge specification, as if it were a logic symbol4.

Similarly, requirement R5 prescribes that the dataset(s) being used
for training and testing the predictors – as well as the schema of the

4 For instance, a binary classifier may be mapped onto a logic unary predicate,
where the predicate’s name is the name of the predicted class.

data therein contained –, should be declared in SKI-lang too. This
includes the dataset’s name, the names of the features, the classifi-
cation of features as target or non-target, and the data type of each
feature—aside from the actual URLs or paths to the dataset(s) files.

Finally, requirement R6 prescribes that SKI-lang should let the
user select the SKI algorithm to be used for injecting the symbolic
knowledge into the ML predictors. This implies that a few more fa-
cilities should be available to SKI-lang users, namely: (i) some syn-
tactical construct to select the SKI algorithm to adopt, and (ii) mul-
tiple, ad-hoc parsers for adapting SKI-lang’s syntax as many SKI
algorithms. Requirement R7 complements such customisability by
allowing the user to customize details such as: the fuzzification and
grounding strategies, the learning rate, the number of epochs, the ran-
dom seeds, etc.—possibly including safe defaults.

3.2 Syntax By Examples

SKI-lang adopts a YAML-like syntax as its foundational design
choice. YAML5 is a popular and intuitive configuration language,
widely adopted in the data science and software engineering commu-
nities for its clean readability and shallow nesting. Its ability to sup-
port explicit sectioning, hierarchical definitions, as well as anchors
and references makes it ideal for the kind of structured yet flexible
specification required in neuro-symbolic workflows. Moreover, the
existence of robust and mature parsing libraries across several pro-
gramming languages ensures seamless integration of SKI-lang into
modern ML programming frameworks.

Each SKI-lang script is a YAML file composed of five primary
sections: data, optimization, learnables, knowledge,
and constraints. The data section declares the dataset(s) to
be used and defines their schema, thereby addressing requirement
R5. The optimization section specifies all tunable hyperparam-
eters and SKI-related configuration options, addressing requirements
R6 and R7. The learnables section declares the structure, I/O
types, and hyperparameters of the learnable sub-symbolic predictors
to be trained, covering requirements R4 and R3 (as far as struc-
turing is concerned). The constraints section encodes declar-
ative statements that represent symbolic knowledge to be injected as
constraints—hence addressing requirements R1, R2, and R3 (as far
as constraining is concerned). Finally, the knowledge section al-
lows users to declare auxiliary symbolic definitions, reusable logic
predicates, and domain knowledge to be referenced in the aforemen-
tioned sections—thus supporting requirements R1, R2, and R3 (as
far as embedding is concerned).

Below, we explain the intended purpose of each section, as well as
the key features of SKI-lang’s syntax, via a few incremental exam-
ples tailored on the benchmarks from section 2.3.

3.2.1 MNIST Example

Here we present a minimal example of SKI-lang applied to the ‘sum
of MNIST digits’ benchmark, where a single rule involving pairs of
MNIST digits is injected via constraining. Refer to listing 1 for the
features described here.

Pythonic formulas. Symbolic formulas appearing in the
constraints, knowledge, and learnables sections are ex-
pressed using a compact, Python-like syntax. These formulas con-
sist of algebraic and logical expressions over variables and constants,

5 cf. https://yaml.org

https://yaml.org

1 data:
2 MNIST:
3 instances: [x, y]
4 features:
5 - {name: image, type: tensor2d(28, 28)}
6 targets:
7 - {name: value, values: 0..9}
8 learnables:
9 digit:

10 inputs: [MNIST.features]
11 outputs:
12 - {source: MNIST.targets, transform: ohe}
13 structure:
14 type: neural_network
15 layers:
16 - {type: dense, size: 128, activation: relu}
17 - {type: dense, size: 64, activation: relu}
18 - {type: dense, size: 10, activation: softmax}
19 constraints:
20 - always: digit(x)+digit(y) == x.value+y.value

Listing 1: SKI-lang example: Sum of MNIST Digits benchmark

with symbols either implicitly or explicitly declared in the data sec-
tion to ensure consistency with the dataset schema. In this way, SKI-
lang allows logic constraints to refer directly to instance-level values,
features, or model predictions, using intuitive dot-notation and func-
tional application.

For example, to express the constraint that, for any pair of
MNIST digits x and y, the sum of the predicted classes must
equal the sum of the ground-truth classes, one can write a formula
as simple as: digit(x)+digit(y) == x.value+y.value
Unpacking the minimal example from listing 1, we can observe sev-
eral key elements of SKI-lang in action, and understand how the for-
mula above is interpreted.

The constraints section can be filled with a list of formulas,
each one expressing a symbolic constraint to be injected. Each con-
straint is expressed in a natural and concise manner, with a Pythonic
syntax which is familiar to most data scientists. Constraints should
be prefixed by a keyword specifying their applicability scope (e.g.
always) over the declared instance variables (e.g. x and y), which
are introduced in the data section as independent draws from the
dataset(s) therein declared. In the particular case of listing 1, the
always keyword indicates that the constraint should be re-evaluated
for every pair of instances x and y drawn from the dataset.

The rest of the data section declares the structure of the dataset at
hand—i.e., what features and targets it contains, and of what types.
In the MNIST case, each instance includes an image feature (rep-
resented as a 28 × 28 tensor, i.e. a gray-scale picture depicting a
handwritten digit), and a target feature value ranging from 0 to 9
(representing the digit class). Hence, expressions like x.value and
y.value are evaluated as the ground-truth class labels of x and y.

Learnables as the link between realms. The learnables sec-
tion hosts named declarations for trainable ML predictors, and their
hyperparameters, possibly expressed in terms of the dataset schema.
The MNIST example from listing 1 introduces a model named
digit, i.e.: a neural classifier aimed to predict the class of a digit,
given its image. The declaration includes the model’s name, along
with an architectural specification (e.g., two layers with ReLU ac-
tivations and a softmax output layer). Notice that the input layer
is not explicitly declared, as it is automatically inferred from the
dataset schema, while the output layer must be explicitly declared
with an activation function which is adequate for the task at hand
(here: softmax for multi-class classification).

Importantly, in SKI-lang, once a predictor is named (here:
digit), it becomes callable as a logic function in symbolic expres-
sions. Thus, digit(x) represents the predicted class of instance x,
and the whole constraint can be interpreted as a symbolic equality

1 data:
2 adult:
3 instances: [person]
4 features:
5 - {name: age, type: int}
6 - name: race
7 values: [White, Black, ...]
8 # ... other features here ...
9 targets:

10 - {name: income, values: ['<=50K', '>50K']}
11 learnables:
12 over50k:
13 inputs: [adult.features]
14 outputs:
15 - {source: adult.targets, transform: ordinal}
16 structure:
17 type: neural_network
18 layers:
19 - {type: dense, size: 128, activation: relu}
20 - {type: dense, size: 1, activation: sigmoid}
21 optimization:
22 batch_size: 256
23 constraints:
24 - always: over50k(adult.features) == adult.income
25 - global: SP(adult.race,over50k(adult.features))<=0.1

Listing 2: SKI-lang example: Fair Income Prediction

between predicted and ground-truth sums.
Speaking of learnables, it is worth focussing on the inputs

(resp. outputs) sub-section: this is where the model’s input and
output types are declared, hence allowing for computing the shapes
of its input and output layers. Such declarations may reference the
dataset’s attribute names, as defined in the data section, using the
dataset’s name as a global variable, and feature names as attributes
(e.g., MNIST.features). If transformations are needed – such as
one-hot encoding (OHE) for categorical features – these should be
declared here too, as they must be kept into account when shaping
the model’s structure, yet they should be transparent to the symbolic
knowledge specification—meaning that symbolic formulas would
keep referring to the original features instead of the encoded ones.

Multiple instances at a time. Most notably, SKI-lang assumes
that the specific variable names being used to refer to instances of
a dataset are declared in the data section too, explicitly, under the
instances sub-sub-section (cf. x and y in listing 1). This is not
just a readability feature, but rather a crucial design choice that al-
lows SKI-lang to declare when a SKI process is considering to mul-
tiple instances at a time.

In fact, there could be scenarios where the symbolic knowledge to
be injected involves multiple instances at once. The simplest example
is the ‘sum of MNIST digits’, where the formula to inject considers
two digits at a time, and it subtends a universal quantification over
all pairs of instances. Generalizing on this point, SKI-lang allows for
the declaration of multiple instance variables, hence allowing for the
injection of rules that involve (at maximum) all of them at once.

Declaring the multiple instances explicitly, in turns, enables SKI-
lang parsers to configure data-loaders and batching strategies accord-
ingly, ensuring that the target amount of instances are loaded alto-
gether during training, injection, and inference.

3.2.2 Census Income Example

Here we present a minimal example of SKI-lang applied to the ‘fair
income prediction’ benchmark, where a column-wise fairness con-
straint is injected via constraining into an ordinary binary classifier
trained via supervised learning. We focus only on new syntactical as-
pects which are not already covered by the MNIST example. Refer
to listing 2 for the features described here.

Column-wise expressions. Let us consider the case where fair-
ness is computed by means of the statistical parity criterion, which

requires that the predicted income is independent of some sensi-
tive attribute (say, race). To compute statistical parity, one needs
to compare the distribution of the predicted income across differ-
ent values of the race column—a dataset-wise operation, be it the
training- or test-set, or just a batch.

In SKI-lang, column-wise expressions are supported by the
<dataset>.<column> syntax, where <dataset> is the name
of the dataset declared in the data section, and <column> is the
name of some column as declared in the same section. Expressions
of this form are evaluated as column tensors, allowing the application
of tensor operations across the entire column. Hence, assuming that a
built-in function SP is available to compute statistical parity among
two column-tensors, the fairness constraint can be expressed as in
listing 2. Another hidden assumption in there is that applying the
learnable function over50k to a multi-dimensional tensor contain-
ing the training instances input features (e.g., adult.features)
would yield a column-tensor containing the predicted income for
each instance.

In this example, there are then two constraints being declared
for injection: an ordinary supervision constraint (i.e., the predicted
income should match the expected one) to be computed instance-
wise, and a fairness constraint (i.e., the statistical parity between the
predicted income across races should be below threshold) to be
computed column-wise—hence, globally, i.e. once per dataset.

Optimization parameters. A common trick to implement
column-wise constraints during gradient-descent-based training pro-
cesses is to compute those constraints over the entire batch—leading
to wider batches to be preferrable. To account for this and other simi-
lar cases, SKI-lang supports the specification of custom optimization
parameters in the outer optimization section of the YAML con-
figuration. In listing 2, for instance, the batch_size parameter is
set to 256.

In general, other optimization-related parameters must be speci-
fied here, such as: (i) the number of training epochs, (ii) the learning
rate, (iii) the random seed, (iv) the optimizer and (v) the injection
algorithm to be used, etc.

Built-in functions. To simplify the specification of common sym-
bolic constraints, SKI-lang supports referencing built-in functions.
This is the case, for instance, of the SP function in listing 2, which
computes the statistical parity between two column tensors. More
generally, these are ordinary Python functions involving tensors as
arguments, and returning tensors as results. These can be provided
as built-in symbols upon calling the SKI-lang parser, and allow for a
more concise specification of common symbolic constraints.

Despite their simplicity, the possibility to plug additional functions
to simplify the expression of symbolic logic is a key engineering
feature of our approach. This is where SKI-lang becomes the sub-
stratum upon which SKI algorithms engineers can build re-usable
functions for expressing symbolic knowledge to be reused.

3.2.3 Poker Hand Example

Here we present a minimal example of SKI-lang applied to the
‘poker hand classification’ benchmark, where the learning process
may greatly benefit from symbolic knowledge, which is in turn quite
complex to express. We focus only on new syntactical aspects which
are not already covered by previous examples. Refer to listing 3 for
the features described here.

Test-set separation. SKI-lang naturally supports the separation of
training- and test-sets, by allowing the user to declare them in sep-

1 data:
2 PokerHand:
3 train: &dataset
4 file: https://site.com/poker-hand.zip
5 unpack: path/to/training.data
6 type: csv(',')
7 test: {<<: *dataset, file: path/to/test.data}
8 instance_name: hand
9 features:

10 - &suits
11 name: suit1
12 values: {hearts: 1, ..., clubs: 4}
13 group: suits
14 - &ranks
15 name: rank1
16 values: {ace: 1, '2': 2, ..., king: 13}
17 group: ranks
18 # ... other features here ...
19 - {<<: *suits, name: suit5}
20 - {<<: *ranks, name: rank5}
21 target:
22 name: Class
23 values: [nothing, one_pair, ..., royal_flush]
24 learnable:
25 poker_hand:
26 # NN specification here
27 knowledge:
28 Pair:
29 args: [hand]
30 clause: min_repetitions(2, hand.ranks)
31 TwoPairs:
32 args: [hand]
33 clause:
34 2 <= sum(r1==r2 for r1,r2 in combs(hand.ranks, 2))
35 # ... other rules here ...
36 RoyalFlush:
37 args: [hand]
38 clause: Flush(hand) & MaximumStraight(hand)
39 constraints:
40 - always: poker_hand(hand.features) == hand.Class,
41 weight: 1
42 - if: RoyalFlush(hand)
43 then: poker_hand(hand.features) == royal_flush
44 weight: 9
45 # ... other constraints here ...
46 - if: Pair(hand)
47 then: poker_hand(hand.features) == one_pair
48 weight: 1

Listing 3: SKI-lang example: Poker Hand Classification

arate subsections of the data section. As exemplified in listing 3,
the train (resp. test) subsection declares the training-set (resp.
test-set), and they both allow for the indication of a file – possibly re-
mote, possibly to be unpacked from an archive – and the data format
(e.g. CSV) of the file contents. They also allow for selecting different
samples from the same dataset file, indicating the split percentage.

Handy features from YAML. Being YAML-based, SKI-lang nat-
urally supports the use of6 anchors (&name), aliases (*name), and
merge keys (<<: *name) to avoid code duplication and promote
reusability. In this way, repetitive information can be declared once
and reused across the script. Choosing meaningful anchor names
may help in retaining the declarativeness of the code.

In listing 3, for instance, this feature is used to avoid repeating
details between the training- and test-set declarations, as well as to
shorten the dataset features’ declaration considerably (extensive lists
of values for categorical/ordinal features must be written only once).

Background Knowledge. The knowledge section allows for the
declaration of reusable logic predicates, which can be referenced
in the constraints and learnable sections, in order to keep
the constraining or structuring specifications concise and declarative,
and to avoid code duplication.

As exemplified in listing 3, the knowledge section declares a set
of logic predicates, indexed by their name (to avoid name clashes).
Each predicate comes with a list of formal argument names (args),
– which can be considered either as logic variables or as references
to unknown tensors, depending on the mindset – and a clause,
which is a Pythonic formula that defines when the predicate holds

6 cf. https://archive.ph/PobLI

https://archive.ph/PobLI

as a function of its arguments. Technically speaking, the body of the
clause is a Python expression which should return a boolean value –
when interpreted as a logic formula – or a scalar tensor in the range
[0, 1]—when interpreted numerically.

Handy features from Python. Being Pythonic, SKI-lang also sup-
ports the use of comprehensions to enumerate over multiple items at
once. This is particularly useful to make complex rules more concise
and declarative.

Consider for instance the case of the TwoPairs rule in listing 3.
This rule states how to compute whether a numeric tensor represent-
ing a poker hand – namely, a vector of the form [suit1, rank1,
..., suit5, rank5] – is a two-pairs hand. Computationally,
the rule considers only the rank-related features of the input tensor
(i.e., [rank1, ..., rank5]), and all possible 2-sized combina-
tions of them (via an ad-hoc built-in function combs); counting how
many combinations are composed by equals ranks. If the count is
greater than 2, then the hand is classified as a two-pairs hand. Thanks
to generator comprehensions, the rule specification is concise and
readable, and it matches the Python implementation directly.

Weighted & Guarded Constraints. Finally, SKI-lang allows for
the specification of weighted constraints, possibly marked by a
guard condition which describes when the constraint should be
enforced. These features are particularly useful when rules in the
constraints section are not mutually exclusive, like in the case
of the Poker hand classification benchmark. For instance, in that
benchmark, the TwoPairs rule is not mutually exclusive with the
Pair one: when the first is satisfied, the second is certainly satis-
fied too. When this is the case, SKI-lang allows for (cf. listing 3) the
specification of (i) a guard – prefixed by the if keyword – which
describes when (i.e. for which instances in the dataset) the rule pre-
fixed by then should be enforced, and, optionally, (ii) a weight
value, which is a scalar value in the range R≥0 defining the relative
importance of the constraint w.r.t. to other constraints in the same
section.

Of course, both guards and constraints can refer to predicates de-
fined in the knowledge section, and can be combined with other
constraints via logical operators. Furthermore, despite the particu-
lar interpretation of weights is up to the SKI algorithm being used,
but they are guaranteed to be normalized w.r.t. the total sum of all
weights, and they are commonly implemented as multiplicative fac-
tors when constraints are turned into penalties in loss functions.

4 Implementation Status and Roadmap

Technologically speaking, SKI-lang is a working prototype, imple-
mented in Python 3.10, and built on top of well-known ML libraries
such as PyTorch [18], SciKit-Learn [19], and Pandas [17].
The source code is available on Anonymous4Science7, for public in-
spectability and reproducibility.

At the current stage of development, the implementation acts as a
parser for SKI-lang scripts, whose content is then exploited to auto-
mate: (i) the loading of the training and test datasets as Pandas data
frames, (ii) their preprocessing (e.g., normalization, encoding, etc.),
via SciKit-Learn’s application programming interfaces (APIs),
(iii) the instantiation of PyTorch modules to represent the learnable
predictors, (iv) the instantiation of PyTorch data-loaders to load the
datasets in batches, (v) the configuration of PyTorch optimizers to
train the aforementioned predictors, (vi) the fuzzification of symbolic

7 cf. https://anonymous.4open.science/r/skilang-68AC

Figure 1: Results of applying SKI in the Fair Income Prediction
benchmark (cf. 2.3) via SKI-lang.

knowledge into the predictors’ loss functions via PyTorch’s API,
and, finally, (vii) the training of the predictors, again via PyTorch.

It is worth mentioning that the current implementation assumes
that training is performed via stochastic gradient descent (SGD) op-
timizers, in turns relaying on batches of instances being loaded from
the training set. The batching here is particularly important because
logic constraints are evaluated over batches, rather than over the en-
tire training set, which is a common practice in SKI literature making
the “batch size” a crucial hyperparameter to be tuned.

Limitations and Future Interventions. While the current archi-
tecture is stable, the implementation is still a work in progress, and
some features are still under development, while others are already
ready for use. In particular, requirements from R1 to R7 are already
supported, despite with some minor limitations. Details about the
current limitations and our plans to address them are following.

While R1 is fully satisfied at the syntactical level, meaning that all
sorts of expressions prescribed by the requirement can be expressed
in SKI-lang, the implementation currently lacks support for injecting
expressions involving two or more instances at once. In fact, expres-
sions of such sorts would require custom data-loaders to be imple-
mented, sampling the Cartesian power of training sets—and a gen-
eral (supporting N instances at once, with parametric N) solution is
still under development.

Requirement R3 is partially satisfied, as the current implemen-
tation only supports the injection of symbolic knowledge as con-
straints, while the structuring of predictors from symbolic expres-
sions is ignored by the parser. Again, filling this gap is a work in
progress, requiring ad-hoc converters from Pythonic formulæ to neu-
ral structures to be implemented – similarly, to what happens in [15]
– on top of PyTorch’s API, with minimal or no changes to the SKI-
lang syntax.

Finally, despite allowing for the customisation of learning param-
eters such as the learning rate, the number of epochs, etc., require-
ments R6 and R7 are still mostly unsupported, as the current imple-
mentation relies on a single SKI structuring algorithm, and a single
fuzzification strategy. In fact, despite the framework is designed to
let developers plug in new SKI algorithms and fuzzification strate-
gies – by providing abstract APIs that implementers can extend and
override – the implementation currently only ships no alternative al-
gorithms or strategies. This is a deliberate implementation choice:
we wanted to stabilise the syntax and the software architecture first,
while leaving the door open for future contributions – from either the
community or ourselves – to implement additional algorithms and

https://anonymous.4open.science/r/skilang-68AC

strategies. The rationale here is straightforward: widening the cov-
erage of SKI-lang’s supported algorithms and strategies takes time,
effort, and care, hence this goal should be pursued incrementally.

Demonstrative Experiments. To demonstrate the functionality of
SKI-lang in its current implementation, we report experiments on
the Fair Income Prediction benchmark, as described in sections 2.3,
and 3.2.2. An overview of the results is shown in section 4. As the
reader can notice, SKI-lang is effective in injecting symbolic knowl-
edge into the predictors, leading to significant improvements in the
fairness of the predictions at the expense of a slight decrease in pre-
dictive performance (both accuracy and F1-score). The phenomenon
is expected, and it is known in the literature as the accuracy–fairness
trade-off.

5 Conclusions

In this paper, we introduced SKI-lang, a DSL designed to make SKI
practical and accessible for data scientists. We discussed its design
rationale, provided concrete syntax examples, and demonstrated its
applicability to well-known neuro-symbolic benchmarks. Our pre-
liminary implementation shows that SKI-lang can effectively stream-
line SKI workflows and facilitate the integration of symbolic knowl-
edge into ML pipelines.

Future work will focus on extending algorithm support, improv-
ing customisability, and further evaluating SKI-lang across diverse
application domains.

Acknowledgements

This work was partially supported by PNRR – M4C2 – Investment
1.3, Partenariato Esteso PE00000013 – “FAIR—Future Artificial In-
telligence Research” – Spoke 8 “Pervasive AI”.

References
[1] A. Agiollo, A. Rafanelli, M. Magnini, G. Ciatto, and A. Omicini. Sym-

bolic knowledge injection meets intelligent agents: Qos metrics and ex-
periments. Autonomous Agents and Multi-Agent Systems, 37(2), June
2023. ISSN 1573-7454. doi: 10.1007/s10458-023-09609-6. URL
http://dx.doi.org/10.1007/s10458-023-09609-6.

[2] M. Ajtai and Y. Gurevich. Datalog vs first-order logic. Journal of Com-
puter and System Sciences, 49(3):562–588, Dec. 1994. ISSN 0022-
0000. doi: 10.1016/s0022-0000(05)80071-6. URL http://dx.doi.org/
10.1016/S0022-0000(05)80071-6.

[3] S. Badreddine, A. S. d’Avila Garcez, L. Serafini, and M. Spranger.
Logic tensor networks. Artif. Intell., 303:103649, 2022. doi: 10.
1016/J.ARTINT.2021.103649. URL https://doi.org/10.1016/j.artint.
2021.103649.

[4] B. P. Bhuyan, A. Ramdane-Cherif, R. Tomar, and T. P. Singh. Neuro-
symbolic artificial intelligence: a survey. Neural Computing and
Applications, 36(21):12809–12844, June 2024. ISSN 1433-3058.
doi: 10.1007/s00521-024-09960-z. URL http://dx.doi.org/10.1007/
s00521-024-09960-z.

[5] G. Ciatto, F. Sabbatini, A. Agiollo, M. Magnini, and A. Omicini. Sym-
bolic knowledge extraction and injection with sub-symbolic predictors:
A systematic literature review. ACM Computing Surveys, 56(6):161:1–
161:35, June 2024. ISSN 0360-0300. doi: 10.1145/3645103. URL
https://dl.acm.org/doi/10.1145/3645103.

[6] A. Daniele and L. Serafini. Knowledge enhanced neural networks for
relational domains. In A. Dovier, A. Montanari, and A. Orlandini,
editors, AIxIA 2022 - Advances in Artificial Intelligence - XXIst In-
ternational Conference of the Italian Association for Artificial Intelli-
gence, AIxIA 2022, Udine, Italy, November 28 - December 2, 2022, Pro-
ceedings, volume 13796 of Lecture Notes in Computer Science, pages
91–109. Springer, 2022. doi: 10.1007/978-3-031-27181-6_7. URL
https://doi.org/10.1007/978-3-031-27181-6_7.

[7] X. Duan, X. Wang, P. Zhao, G. Shen, and W. Zhu. Deeplogic: Joint
learning of neural perception and logical reasoning. IEEE Trans. Pat-
tern Anal. Mach. Intell., 45(4):4321–4334, 2023. doi: 10.1109/TPAMI.
2022.3191093. URL https://doi.org/10.1109/TPAMI.2022.3191093.

[8] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel. Fairness
through awareness. In S. Goldwasser, editor, Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012,
pages 214–226. ACM, 2012. doi: 10.1145/2090236.2090255. URL
https://doi.org/10.1145/2090236.2090255.

[9] C. Glanois, Z. Jiang, X. Feng, P. Weng, M. Zimmer, D. Li, W. Liu,
and J. Hao. Neuro-symbolic hierarchical rule induction. In K. Chaud-
huri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, edi-
tors, International Conference on Machine Learning, ICML 2022, 17-
23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 7583–7615. PMLR, 2022. URL
https://proceedings.mlr.press/v162/glanois22a.html.

[10] P. KÖRNER, M. LEUSCHEL, J. BARBOSA, V. S. COSTA, V. DAHL,
M. V. HERMENEGILDO, J. F. MORALES, J. WIELEMAKER,
D. DIAZ, S. ABREU, and G. CIATTO. Fifty years of prolog and
beyond. Theory and Practice of Logic Programming, 22(6):776–858,
May 2022. ISSN 1475-3081. doi: 10.1017/s1471068422000102. URL
http://dx.doi.org/10.1017/S1471068422000102.

[11] H. J. Levesque and R. J. Brachman. Expressiveness and tractability in
knowledge representation and reasoning. Computational Intelligence,
3:78–93, 1987. doi: 10.1111/j.1467-8640.1987.tb00176.x. URL https:
//doi.org/10.1111/j.1467-8640.1987.tb00176.x.

[12] Z. Li, J. Huang, and M. Naik. Scallop: A language for neurosymbolic
programming. Proc. ACM Program. Lang., 7(PLDI):1463–1487, 2023.
doi: 10.1145/3591280. URL https://doi.org/10.1145/3591280.

[13] M. Magnini, G. Ciatto, and A. Omicini. On the design of psyki: A plat-
form for symbolic knowledge injection into sub-symbolic predictors. In
D. Calvaresi, A. Najjar, M. Winikoff, and K. Främling, editors, Explain-
able and Transparent AI and Multi-Agent Systems - 4th International
Workshop, EXTRAAMAS 2022, Virtual Event, May 9-10, 2022, Revised
Selected Papers, volume 13283 of Lecture Notes in Computer Science,
pages 90–108. Springer, 2022. doi: 10.1007/978-3-031-15565-9_6.
URL https://doi.org/10.1007/978-3-031-15565-9_6.

[14] M. Magnini, G. Ciatto, and A. Omicini. A view to a KILL: Knowledge
injection via lambda layer. In A. Ferrando and V. Mascardi, editors,
WOA 2022 – 23rd Workshop “From Objects to Agents”, volume 3261 of
CEUR Workshop Proceedings, pages 61–76. CEUR-WS.org, Genova,
Italy, Nov. 2022. URL http://ceur-ws.org/Vol-3261/paper5.pdf.

[15] M. Magnini, G. Ciatto, and A. Omicini. KINS: Knowledge injection via
network structuring. In R. Calegari, G. Ciatto, and A. Omicini, editors,
CILC 2022 – Italian Conference on Computational Logic, volume 3204
of CEUR Workshop Proceedings, pages 254–267, Bologna, Italy, 2022.
CEUR-WS.org. URL http://ceur-ws.org/Vol-3204/paper_25.pdf.

[16] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. D. Raedt.
Neural probabilistic logic programming in deepproblog. Artif. Intell.,
298:103504, 2021. doi: 10.1016/J.ARTINT.2021.103504. URL https:
//doi.org/10.1016/j.artint.2021.103504.

[17] W. McKinney. Data structures for statistical computing in python.
In S. van der Walt and J. Millman, editors, Proceedings of the
9th Python in Science Conference 2010 (SciPy 2010), Austin, Texas,
June 28 - July 3, 2010, pages 56–61. scipy.org, 2010. doi:
10.25080/MAJORA-92BF1922-00A. URL https://doi.org/10.25080/
Majora-92bf1922-00a.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An impera-
tive style, high-performance deep learning library. In H. M. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in python. J. Mach. Learn.
Res., 12:2825–2830, 2011. doi: 10.5555/1953048.2078195. URL
https://dl.acm.org/doi/10.5555/1953048.2078195.

[20] T. Rocktäschel and S. Riedel. End-to-end differentiable proving. In
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information

http://dx.doi.org/10.1007/s10458-023-09609-6
http://dx.doi.org/10.1016/S0022-0000(05)80071-6
http://dx.doi.org/10.1016/S0022-0000(05)80071-6
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
http://dx.doi.org/10.1007/s00521-024-09960-z
http://dx.doi.org/10.1007/s00521-024-09960-z
https://dl.acm.org/doi/10.1145/3645103
https://doi.org/10.1007/978-3-031-27181-6_7
https://doi.org/10.1109/TPAMI.2022.3191093
https://doi.org/10.1145/2090236.2090255
https://proceedings.mlr.press/v162/glanois22a.html
http://dx.doi.org/10.1017/S1471068422000102
https://doi.org/10.1111/j.1467-8640.1987.tb00176.x
https://doi.org/10.1111/j.1467-8640.1987.tb00176.x
https://doi.org/10.1145/3591280
https://doi.org/10.1007/978-3-031-15565-9_6
http://ceur-ws.org/Vol-3261/paper5.pdf
http://ceur-ws.org/Vol-3204/paper_25.pdf
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.1016/j.artint.2021.103504
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://dl.acm.org/doi/10.5555/1953048.2078195

Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 3788–3800, 2017. URL https://proceedings.neurips.cc/paper/
2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html.

[21] P. Sen, B. W. S. R. de Carvalho, R. Riegel, and A. G. Gray. Neuro-
symbolic inductive logic programming with logical neural networks.
In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Artificial Intel-
ligence, IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March
1, 2022, pages 8212–8219. AAAI Press, 2022. doi: 10.1609/AAAI.
V36I8.20795. URL https://doi.org/10.1609/aaai.v36i8.20795.

[22] H. Shindo, D. S. Dhami, and K. Kersting. Neuro-symbolic forward
reasoning. CoRR, abs/2110.09383, 2021. URL https://arxiv.org/abs/
2110.09383.

[23] T. van Gelder. Why Distributed Representation is Inherently Non-
Symbolic, pages 58–66. Springer Berlin Heidelberg, 1990. ISBN
9783642760709. doi: 10.1007/978-3-642-76070-9_6. URL http://dx.
doi.org/10.1007/978-3-642-76070-9_6.

https://proceedings.neurips.cc/paper/2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://doi.org/10.1609/aaai.v36i8.20795
https://arxiv.org/abs/2110.09383
https://arxiv.org/abs/2110.09383
http://dx.doi.org/10.1007/978-3-642-76070-9_6
http://dx.doi.org/10.1007/978-3-642-76070-9_6

	Introduction
	Background
	symbolic knowledge injection (SKI)
	About SKI Languages
	Running Examples and Benchmarks

	SKI-lang: A Practical Language for SKI
	Design Criteria
	Syntax By Examples
	MNIST Example
	Census Income Example
	Poker Hand Example

	Implementation Status and Roadmap
	Conclusions

