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Abstract. We introduce a neuro-argumentative pipeline for legal
outcome classification on plain-text legal case descriptions, which
integrates the flexibility of neural machine learning methods with
the inherent explainability and reasoning capabilities of Assumption-
Based Argumentation (ABA). This approach addresses the limita-
tions of opaque machine learning models by producing interpretable
logical rules from case data, which can be used to justify the pre-
dicted outcome. The pipeline consists of a neural BERT-based fea-
ture extractor, which processes the case description to generate log-
ical facts, and a symbolic component, which applies ABALearn, a
form of symbolic learning, to these facts to derive an ABA frame-
work that captures domain-specific rules. The trained feature ex-
tractor can then be used alongside the learned framework to predict
the outcome of new legal cases. The learned rules serve as explicit
justifications for each prediction, resulting in an inherently explain-
able decision-making process. When evaluated using a synthetically
generated legal dataset, our proposed pipeline achieves performance
comparable to state-of-the-art models in terms of F1 score and other
standard classification metrics, while also introducing a transparent,
symbolic reasoning layer.

1 Introduction

Legal decision-making often involves binary or categorical out-
comes, such as guilty or not guilty, or application granted or de-
nied, based on case facts, applicable laws, and supporting arguments.
This process requires careful manual analysis by legal profession-
als, who must identify relevant facts, interpret complex statutory
language, and reason about their implications. The repetitive and
time-consuming nature of this work has motivated research into Al-
assisted legal decision-making systems [11].

Large language models (LLMs) such as BERT [8] and GPT [13]
have demonstrated impressive natural language understanding ca-
pabilities and show promise for legal tasks such as case classifica-
tion [15]. However, their black-box nature raises serious concerns,
especially since these models can hallucinate, generating plausible-
sounding but incorrect outputs [6], and often fail to perform the kind
of structured, statutory reasoning required in law [2]. In the legal
field, where decisions carry significant consequences and require jus-
tification, explainability is essential. Systems that provide decisions
without transparent reasoning undermine trust, accountability, and
fairness. Therefore, any system used for legal decision-making must
prioritise explainability and transparency.
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We propose a neuro-argumentative pipeline (see Figure 1) that en-
ables Assumption-Based Argumentation (ABA) [3, 5] on natural lan-
guage legal case descriptions. A neural feature extractor identifies
relevant facts from case descriptions, which are translated into a sym-
bolic form suitable for ABALearn [12]. This is a form of symbolic
learning which obtains ABA frameworks from background knowl-
edge and positive/negative examples, to then make case-based infer-
ences given the facts of new cases.

One of the key benefits of symbolic learning is its inherent ex-
plainability. Each derived rule explicitly shows how particular facts
lead to a legal decision or classification outcome. This allows users
to trace which rules apply to a given case and see the justification for
the prediction output.

We evaluate our pipeline on two datasets [14], extended with syn-
thetic case descriptions. One is based on tort law, involving liability
for damages [16] and the other concerns eligibility for a welfare ben-
efit based on criteria like age, gender, and distance [1].

We compare our pipeline’s performance to other state-of-the-art
classification systems, using standard classification metrics such as
accuracy and F1 score. The final performance of the pipeline is com-
parable to that of the state-of-the-art, while also introducing explain-
ability and reasoning.

Overall, this paper contributes to the growing field of neuro-
symbolic and explainable AI by demonstrating how neural fea-
ture extraction and argumentation-based reasoning can be effectively
combined in the legal domain, offering both performance and ex-
plainability.

2 Preliminaries
2.1 Assumption-Based Argumentation

Assumption-Based Argumentation is a structured argumentation
formalism that generalises various non-monotonic reasoning ap-
proaches. In ABA, arguments and attacks are defined through rules,
assumptions, and their contraries. It provides a formal basis for rea-
soning, allowing us to construct arguments that attack or defend as-
sumptions in order to draw acceptable conclusions [5].

An ABA framework (as originally proposed in [3], but presented
here following [5]) is a tuple (£, R,.A, ) such that

e (L, R)isadeductive system, where L is a language and R is a set
of (inference) rules of the form sp < s1,...,8m (m > 0,s; € L,
for 1 <i < m);
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e A C Lis a(non-empty) set of assumptions;'
e  is atotal mapping from A into £, where @ is the contrary of a,
fora € A.

Given a rule sop < Si1,...,Sm, So 18 the head and si,..., 5., is
the body; it m = 0 then the body is said to be empty (represented
as so — or so < true) and the rule is called a fact. In this pa-
per we focus on flat ABA frameworks, where assumptions are not
heads of rules. Elements of £ can be any sentences, but in this pa-
per we focus on ABA frameworks where L is a finite set of ground
atoms. However, we will use schemata for rules, assumptions and
contraries, using variables to represent compactly all instances over
some underlying universe.

Example 1. An simple ABA framework (L, R, A, ) may be as fol-

lows, for X, Y € {alex, bob, carol, john, mary}:

L = {innocent(X), person(X), not_guilty(X),
witness_con(X,Y), caught_in_the_act(X), liar(X)}

R = {innocent(X) - person(X), not_guilty(X),
guilty(X) < caught_in_the_act(X),
witness_con(mary, alex) <,
witness_con(john, carol) <,
liar(alex) <, caught_in_the_act(bob) <,
person(alex) <,  person(bob) <,  person(carol) <+,
person(john) <, person(mary) <},

A = {not_guilty(X)} with not_guilty(X) = guilty(X).

Without loss of generality, we will leave the language component
of ABA frameworks implicit, and use, e.g., (R,.4, ) to stand for
(L, R, A, ), where L is the set of all sentences in R, A and in the
range of . We will also write facts as rules with equalities in the
body, e.g. we may write liar(alex) < as liar(X) <+ X =alex.

Arguments are deductions of claims using rules and supported by
assumptions, and attacks between arguments target assumptions in
their support, as follows.

e An argument for (claim) s € £ supported by AC Aand RC R
(denoted A Fr s) is a finite tree with nodes labelled by sentences
in £ or by true, where: (i) the root is labelled by s, (ii) leaves
are either ¢true or assumptions in A (iii) non-leaves, s’, have as
children the elements of the body of some rule in R with head s’.

e Argument Ay Fr, s1 attacks argument Ao Fr, s2 if and only if
s1 = a for some a € As.

In ABA, conclusions are drawn by determining acceptability of
sets of arguments (or extensions [5]). In this paper, we use the fol-
lowing notion of extension:

e A set A of arguments is a stable extension iff (i) no argument in
A attacks any argument in A (i.e. A is conflict-free) and (ii) every
argument not in A is attacked by an argument in A.

Example 2. The following are some of the arguments that can be
constructed in the ABA framework F of Example 1 (for simplicity,
we omit to indicate the set of rules that have been used):

Argr: {not_guilty(mary)} b innocent(mary)

Args: {not_guilty(bodb)} b innocent(bob)

Args: {} F guilty(bob)
Argument Argi is not attacked by any other argument, as no argu-
ment can be constructed for the claim guilty(mary). Instead, Args
is attacked by Args, whose claim is the contrary of the assumption

1 The non-emptiness requirement can always be satisfied by including in A a
bogus assumption, with its own contrary, neither occurring elsewhere.

that supports Arga. Args cannot be attacked, as no assumption sup-
ports it. Thus, Arg1 and Args are accepted in the stable extension
of F, while Arg is not. It can be seen that F' has a unique stable
extension (because the attack relation is acyclic). In particular, this
stable extension includes accepting arguments for innocent(alex),
innocent(carol), innocent(mary), and innocent(john), while
it does not include an accepting argument for innocent(bob).

We say that an ABA framework F is satisfiable if it admits at least
one stable extension, and unsatisfiable otherwise. We also say that
a sentence s is accepted, or covered, in a stable extension A of F',
written F' = s, if it is the claim of an argument in A.

2.2 Learning ABA Frameworks

ABA frameworks can be automatically learned from a given back-
ground knowledge, in the form of an ABA framework, a set £1 of
positive examples, and a set £~ of negative examples. To this end,
we follow the ABALearn method [12]:

e Given a satisfiable background knowledge (R, .A, ), positive ex-
amples £ C £ and negative examples £~ C £, with ETNE~ =0,
a solution of ABA learning is a new ABA framework, F' =
(R', A, ), withR C R, AC A',and, foralla € A, @ =7,
such that:
(Existence) F' admits at least one stable extension A,
(Completeness) foralle € £, F' =4 e, and
(Consistency) foralle € £~, F' [ e.

The ABALearn method is based on the use of transformation rules,
which can be used for deriving new ABA frameworks. These trans-
formation rules include: (1) rote learning, which adds a new rule
p(X) + X = a; (2) folding, which, given rules H < B, C and
K <« B, replaces H <— B, C by the new rule H < K, C; (3) as-
sumption introduction, which, given rule H < B, introduces an as-
sumption «, with contrary &, and adds the new rule H < B, «; and
(4) fact subsumption, which deletes any fact of the form p(a) « if
there is an accepted argument with claim p(a) in the ABA framework
(L, R\ A{p(a) <}, A7)

The ABALearn algorithm iterates four steps (according to the pat-
tern: (1);(2;3;4)%):

1. Generating initial rules. This step applies rote learning to cover
positive examples and avoid to cover negative examples.

2. Generalising facts. This step selects a fact obtained by rote learn-
ing and applies fact subsumption. If the fact is not subsumed, it
applies folding with the goal of generating a new, more general,
rule that makes no explicit references to the constants occurring
in the ABA framework.

3. Introducing new assumptions. This step applies assumption in-
troduction to any rule obtained by step (2) if it supports the an
argument for a negative example.

4. Learning facts for contraries. This step applies rote learning to
generate facts for the contrary of the new assumption introduced
by step (3).

Example 3. Let us consider the background knowledge consisting
in the ABA framework F' of Example 1, and the following sets of
positive and negative examples:

ET = {innocent(mary)}

E7 = {innocent(john)}

The positive example innocent(mary) is already covered in the
unique stable extension of F. However, also the negative example



innocent(john) is covered. Thus, by rote learning, ABALearn in-
troduces the new rule:

p1. guilty(X) < X = john
which avoids covering innocent(john). By folding twice, rule p; is
replaced by:

p2. guilty(X) < witness_con(X,Y), person(Y)
Now, the positive example innocent(mary) is no longer covered,
because guilty(mary) is covered. By assumption introduction, we
introduce a new assumption o(Y') with contrary c_a(Y') and, by rote
learning, a new fact:

p3. guilty(X) < witness_con(X,Y),person(Y), a(Y)

pa. c_a(Y) <Y = alex
Finally, by folding, rule p4 is replaced by:

ps. c_a(Y) « liar(Y)
The ABA framework with R' = R U {ps, ps} is a solution of ABA
Learning, as it covers all positive examples and no negative example.

ABALearn is implemented in ASP-ABAlearn [7] (available at
https://github.com/ABALearn/aba_asp). The implementation takes
advantage of the existence of a mapping between ABA frameworks
under stable extensions and Answer Set Programming (ASP) [10],
and in particular, it uses SWI-Prolog [17] and the Clingo [9] ASP
solver. The mapping of ABA frameworks to ASP is exploited, among
other things, for determining the facts to be learned at Steps 1 and 4
of the ABALearn algorithm.

2.3 Datasets

We will use two datasets [14]. The first is based on tort law [16], and
consists of cases represented by ten boolean features:

dmg: Someone has suffered damages by someone else’s act.

. cau: The act caused the suffered damages.

. vrt: The act is a violation of someone’s right.

vst: The act is a violation of a statutory duty.

vun: The act is a violation of unwritten law against proper social
conduct.

jus: There exist grounds of justification.

. ift: The act is imputable to someone because of the person’s fault.
ila: The act is imputable to someone because of law.

ico: The act is imputable to someone because of common opinion.
. prp: The violated statutory duty does not have the purpose to pre-
vent the damages.

DR =

Swvwuo

In addition, each case has a label dut of the verdict on whether
there is a duty to repair damages, that is, the final case outcome.

Hence, the dataset consists of tuples of the following form, where
column dut represents the outcome of the case.

dmg | cau | vrt | vst | vun | jus ift ila | ico | prp | dut
1 1 0 1 0 0 0 0 1 1 1
1 0 1 0 0 0 0 1

The second dataset is based on welfare benefit applications [1],
with cases described in terms of features about applicants’ eligibility:

e Age: Integer. The applicant’s age.

e Gender: Categorical. The applicant’s gender.

e Cony,...,Cons: Boolean. Indicates which years the applicant has
paid contributions.

e Spouse: Boolean. Indicates whether the applicant is the spouse of
the patient.

e Absent: Boolean. Indicates whether the applicant is absent from
the UK.

o Resources: Integer. The applicant’s amount of capital resources.

o Patient Type: Categorical. Indicates whether the patient is an in-
patient or an out-patient.

e Distance (to the hospital): Integer. The distance to the hospital in
km.

Synthetic Data Generation We have implemented a synthetic data
generator to obtain plain text descriptions of cases based on their
features and outcomes in the datasets. This is based on the Mistral-
Small-24B-Instruct-2501 model®. For instance, the generated de-
scription of the first case in the tort law dataset above is as follows:

“During the proceedings, the Plaintiff, Ms. Emily Harris, alleged
that on January 5, 2022, she suffered severe burns while using a de-
fective electric kettle manufactured by the Defendant, KettleTech Inc.
The Plaintiff testified that the kettle, purchased new from a local re-
tailer, malfunctioned when she turned it on, causing hot water to
spray onto her...”

3 Neuro-argumentative pipeline
3.1 Pipeline overview

As shown in Figure 1, the neuro-argumentative pipeline consists of
two main components:

1. a neural feature extractor, responsible for extracting a back-
ground knowledge, along with positive and negative examples,
from labeled legal cases, described as unstructured text, and

2. a symbolic learning module, which learns an ABA framework
from the background knowledge and the examples using the
ABALearn method, and employs the learnt ABA framework to
predict the outcome of new cases.

Dataset of
case descriptions

Feature
Extractor

}

dmg | cau | ... | dut

Extracted
Case Facts

-

ABALearn

ABA
Framework

Figure 1: Outline of neuro-argumentative pipeline

Training Process The dataset, which contains plain text case de-
scriptions labelled with the ground truth feature values and the final
case outcome, is split into two parts:

e One subset (3000 cases) is used to train the neural feature extrac-
tor, mapping text to logical features.

2 https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
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e The other subset (1000 cases) is used by ABALearn to learn new
rules, using the features extracted by the trained extractor along-
side the known case outcomes.

Training the neuro-argumentative pipeline is a two-stage process,
training each component separately. In the first stage, we train the
neural feature extractor to predict the logical features present, using
the plain-text case descriptions as input.

Then we can use the trained feature extractor to extract the log-
ical facts from the case descriptions of the second training subset.
These predicted facts, along with their associated case outcomes, are
used as input to ABALearn to learn new rules and construct an ABA
framework.

The output of the training process is the trained feature extractor
model and the learned ABA framework, which can be used to make
predictions on the outcome of unseen cases using argumentation-
based inference.

Inference At inference time, the neuro-argumentative pipeline op-
erates in a fully end-to-end manner. The process is composed of two
sequential steps: neural feature extraction and symbolic inference.

1. Feature Extraction: Given a plain-text case description, the
trained neural feature extractor is used to predict the logical facts
relevant to the case.

2. Symbolic Inference: The extracted logical facts are added to the
learned ABA framework, which uses argumentation-based rea-
soning to determine the legal outcome for the new case.

3.2 Feature Extraction

This section presents the neural architectures explored for extracting
symbolic features from plain-text legal case descriptions.

3.2.1 BERT-based feature extractor

In our baseline architecture, we utilise the pre-trained Legal-
BERT [4] encoder to extract features from plain-text legal case
descriptions. This implementation was developed only to handle
datasets with exclusively boolean features.

Architecture Overview The feature extractor consists of:

1. A shared Legal-BERT encoder, which processes the input case
description and produces contextual embeddings.

2. A separate independent multilayer perceptron (MLP) head for
each target feature, which predicts binary labels from the [CLS]
token embedding produced by Legal-BERT, indicating the pres-
ence of the target feature.

Training Procedure During training, the Legal-BERT encoder pa-
rameters are frozen to preserve the encoder’s pretrained representa-
tions and reduce computational overhead. Only the individual MLP
heads for each feature are trained using a sigmoid output activation
and binary cross-entropy loss.

Each feature head is trained independently. This means that in ev-
ery training step, each feature’s MLP head is updated using the loss
computed for that feature only.

Benefits and Limitations This architecture provides a simple and
computationally efficient way to extract multiple symbolic features
using a shared transformer-based encoder and avoids interactions be-
tween heads during backpropagation. It benefits from the generalisa-
tion capabilities of a large pre-trained model while keeping the pa-
rameter count and training time low.

However, since the encoder is not updated during training, it can-
not fully adapt to the specific legal domain, which can limit the
feature extractor’s accuracy, especially for more abstract or context-
dependent features.

3.2.2 Fine-tuning the BERT encoder

Architecture Overview - Updates Building upon the feature ex-
tractor described above, this approach retains the same architecture,
however, the encoder parameters are no longer frozen. During train-
ing, the gradients from the loss function are propagated all the way
through the encoder, enabling it to adapt to the specific legal domain,
whether that is tort law or welfare benefit applications.

Training Procedure All MLP heads and the Legal-BERT encoder
are trained together. Given an input case x with n binary features, the
model outputs §1, Y2, - .., Un, and the total loss is calculated as the
sum of binary cross-entropy losses across all heads:

L= BCE(y: i)
=1
where y; is the ground truth for feature ¢. Gradients from this loss
flow through the MLP heads and into the encoder, allowing the model
to learn domain-specific contextual embeddings.

Benefits and Limitations Fine-tuning the Legal-BERT model al-
lows the encoder to adapt to the legal domain and learn better contex-
tual representations, leading to improved classification performance.
However, this approach significantly increases the number of train-
able parameters, leading to higher computational and memory re-
quirements during training. It also introduces a greater risk of over-
fitting, especially when working with small or imbalanced datasets,
as the model may learn to memorise patterns that do not generalise.

3.2.3 Multi-Task Feature Extractor

The previous architectures rely on a single shared encoder, which
can limit task-specific learning and make it difficult to handle het-
erogeneous feature types. To address these challenges, we propose a
multi-task feature extractor architecture where each feature is han-
dled by a dedicated model.

Architecture Overview The proposed architecture consists of
multiple independent BERT encoders, one for each target feature.
Each encoder processes the same input case description but indepen-
dently learns to represent it in a way that is most useful for predicting
its assigned feature. The encoder output is then passed through the
corresponding feature-specific MLP head that produces the predic-
tion.

Training Procedure Our implementation supports three types of
target features:

1. Binary: The MLP head outputs a single neuron with a sigmoid
activation function and is optimised using the binary cross-entropy
loss.

2. Categorical: The MLP head outputs a probability vector over
possible classes using softmax activation and categorical cross-
entropy loss.

3. Numerical: The MLP head outputs a scalar value without activa-
tion and is trained using mean squared error (MSE) loss.



Each encoder-head pair is trained independently using only the la-
bel corresponding to its target feature. The input case description is
shared across all feature models, but there is no parameter sharing
between the encoders. At each training step, we calculate the appro-
priate loss specific to that feature, and use backpropagation only on
the corresponding encoder and head.

Benefits and Limitations The main advantage of this architecture
is improved performance through task specialisation. This indepen-
dent training ensures that the learning for one feature does not con-
flict with another, preserving task-specific representations and gradi-
ents, and allowing the encoder to capture subtle patterns relevant to
its target.

However, this comes at a cost, as the number of parameters in-
creases linearly with the number of features, resulting in higher mem-
ory requirements.

3.3 Symbolic learning

In this section, we show how ABALearn is used as the symbolic
component of the pipeline shown in Figure 1. In particular, we show
how the features of the cases® are encoded to be given as input to
ABALearn. Then, we present an excerpt of the learned ABA frame-
work. Finally, we describe the inference process for predicting case
outcomes and discuss how the learned ABA framework, in conjunc-
tion with the case-specific facts, can be used to provide justifications
for each prediction.

The encoding process is shown in Figure 2. Given any case ¢ and
feature f in {dmg, cau, ..., prp}, if f(¢) is 1, then ‘£ (i) is added
as a fact to the background knowledge of ABALearn. In addition to
background knowledge, ABALearn takes as input a set of positive
and negative examples, denoted by the pair (1, 7). If dut(s) is 1,
then ‘dut (1)’ is added to £T; otherwise, it is added to £~

Tabular Case Facts Examples
n (€+,&7)
i| dmg | cau | .. [ prp | dut | “pgywact
\S
; } (l) } (]) L Mpackground
Knowledge
dmg (1) .
Facyg dmg (2) .
cau(2) .

Figure 2: Encoding cases into ABALearn

Given the input ABA framework shown above, ABALearn aims
to generate a set of rules that covers all the positive examples and
none of the negative examples. This ABA framework learned using
ABALearn is shown below.

o)

% Learnt rules
dut (A) :— alpha_1(A), dmg(A), vst(A), prp(A).
c_alpha_1(A) :—- dmg(A), cau(A), vst(A), prp(A).

% Assumptions

assumption (alpha_1(A)).

% Contraries

contrary (alpha_1(A),c_alpha_1(A)) :-
assumption (alpha_1(A)) .

The learned ABA framework can be used to predict the outcome
of new unseen cases. Let us consider a new case 42 from the tort law
dataset with the following features:

dmg | cau | vrt | vst | van | jus | ift | ila | ico | prp
1 1 0 1 0 0 0 0 1 1

The new case is translated into facts using the same process
described to encode the background knowledge given as input to
ABALearn.

The new facts are then added to the learned ABA framework,
thereby getting the encoding shown below.

o

% Learnt rules

dut (A) :— alpha_1(A), dmg(A), vst(A), prp(A).
c_alpha_1(A) :—- dmg(A), cau(A), vst(A), prp(A).
% Facts of the new case with id 42

dmg (42) . cau(42). vst(42). ico(42). prp(42).

o)

% Facts for case with id 1

dmg (1) . vst(l). prp(l).

% Facts for case with id 2

dmg (2) . cau(2). vst(2). prp(2).

o)

% Command to run ABALearn:

aba_asp(’tort.bk’, $ (1)
[dut(1),...]1, % (2)
[dut (2),...1). % (3)

(1) background knowledge file
a list of positive examples
(3) a list of negative examples

o° o o°
N

3 In the pipeline, these are the features extracted from textual descriptions of
the cases. We focus here, for illustration, on the features in the original tort
law dataset.

We can predict whether there is a duty to repair damages by check-
ing if the claim dut (42) belongs to the stable extension of the
ABA framework augmented with the new facts. The new facts en-
able the deduction of c_alpha_1 (42), which attacks the argu-
ment supporting the deduction of the claim dut (42). Hence, the
ABA framework predicts that there is no duty to repair damages.

4 Evaluation
4.1 Feature Extraction

We begin our evaluation by comparing the performance of the fea-
ture extraction architectures discussed above. We focus on the tort
law dataset, the only one lending itself to all feature extractor archi-
tectures, as it contains binary features.

Figure 3 compares the average F1 scores of all architectures on
the tort law dataset. The baseline Legal-BERT model achieves an
F1 score of 0.66. Fine-tuning the encoder yields a substantial perfor-
mance gain of 22.8%, while the multi-task architecture adds a modest
further improvement of 2.3%.

While the small gain from using multiple encoders may suggest
that a single Legal-BERT encoder already produces sufficiently rich
embeddings for most features, a closer look at per-feature perfor-
mance reveals a different picture. The multi-task model exhibits more
consistent F1 scores across features, whereas the single-encoder
model seems to perform well on some features while underperform-
ing on others.




Macro-averaged F1 Score
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Figure 3: Average feature extraction F1 score for each feature extrac-
tor architecture (tort law dataset)

Downstream Task Performance We also assess the feature ex-
tractor architectures based on their utility in downstream symbolic
learning and classification tasks. Figure 4 presents the pipeline clas-
sification F1 scores for predicting the dut (duty) label for each fea-
ture extractor architecture. The baseline architecture achieves an F1
score of 0.59. Fine-tuning the encoder improves this by 33%, while
the multi-task architecture yields an additional 3.5% improvement.

Downstream Classification of dut label

1.0

0.8121
0.8 0.7846

0.5899

o
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F1 Score

o
IS
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B Non-Fine-tuned Legal BERT
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BN Multi-Task Legal BERT

Figure 4: F1 scores for downstream classification of dut label using
our symbolic module (tort law dataset)

The larger improvements in downstream classification, relative to
standalone feature extraction, show the importance of feature quality
in symbolic learning. The symbolic module depends on consistent
features to learn meaningful rules. Poor-quality features can lead to
learning meaningless or misleading rules, exemplifying the “garbage
in, garbage out” principle. Even small gains in feature extraction can
yield significant benefits in downstream reasoning.

In the pipeline evaluation we adopt the multi-task architecture as
it demonstrates more consistent performance across features.

4.2 Symbolic Learning (ABALearn)

We evaluate ABALearn by training it on fragments of the datasets of
varying sizes to examine how training data volume affects symbolic
learning. We use ground truth features to isolate the symbolic mod-
ule’s performance from that of the feature extractor. As a baseline,
we compare ABALearn to a decision tree classifier, using F1 score
on case outcome predictions.

Figure 5 shows F1 scores across different training set sizes for both
datasets. On the tort law dataset, ABALearn closely tracks the perfor-
mance of the decision tree and begins to outperform it with training
sets of 1000 examples or more. In contrast, ABALearn initially un-
derperforms on the welfare benefit dataset when trained on smaller
sets, but matches the decision tree’s performance once the training
size exceeds 500 examples. This slower convergence is likely due
to the added complexity of handling numerical features, which sig-
nificantly expands the logical space that the ABA framework must
represent.

The strong F1 scores across both datasets suggest that ABALearn
can learn meaningful rules for case outcome classification with rela-
tively limited training examples. This efficiency allows us to allocate
more examples to feature extraction. For our pipeline experiments,
we fix the symbolic training set size at 1000 examples, which is the
training set size where ABALearn surpasses the decision tree on the
tort law dataset and levels off on the welfare benefit dataset.

Tort Dataset - Decision Tree vs ABALearn 1 DgNelfare Benefit Dataset - Decision Tree vs ABALearn

1.05
- Decision Tree - F1
+ ABALeam - F1

- Decision Tree - F1
+ ABALeam - F1

0.80
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250 500 750 1000 1250 1500 1750 2000
Training Set Size

250 500 750 1000 1250 1500 1750 2000
Training Set Size

(a) ABA vs decision tree for the (b) ABA vs decision tree for the
tort law dataset welfare benefit dataset

Figure 5: F1 score comparison of ABALearn models vs decision tree
across our two datasets

4.3 Neuro-argumentative Pipeline

Building on the strong individual performance of the feature extrac-
tor and symbolic learning modules, we now evaluate the end-to-end
neuro-argumentative pipeline, comparing its performance against
several BERT-based classifier approaches for our synthetic datasets.
Figures 6 and 7 show the case outcome classification F1 scores across
the different classifier architectures. For both datasets, the neuro-
argumentative pipeline outperforms both the baseline BERT-base
and Legal-BERT classifiers, but fails to surpass the performance of
their fine-tuned counterparts.

While the 10% relative F1 improvement over baseline classifiers
on the tort law dataset is notable, the consistently strong performance
across all models suggests this domain may be too simple to pose a
meaningful challenge. In contrast, the welfare benefit dataset is more
challenging, causing baseline classifiers to struggle. Here, our neuro-
argumentative pipeline achieves a 39.5% relative F1 improvement
over the domain-specific Legal-BERT classifier and performs within
5% of the fine-tuned model.

It is worth noting that the pipeline’s F1 score is significantly lower
than that of the standalone symbolic module when it is given clean,



dut Label Classification F1 Scores

1.0
0.868 0.880
0.812
0.8 0.726 0.735
v 0.6
o
O
(2]
—
“-0.4
0.2
0.0
BERT-base
B Legal-BERT
I Neuro-argumentative pipeline
BERT-base Fine-tuned
[ Legal-BERT Fine-tuned
Figure 6: F1 scores for the tort law dataset
1.0 eligible Label Classification F1 Scores
' 0.935 0.936
0.892
0.8
0.639
0 0.6
1<)
1%
(%2}
~
“-0.4
0.289
0.2
0.0
BERT-base

B |legal-BERT

I Neuro-argumentative pipeline
BERT-base Fine-tuned

[l Legal-BERT Fine-tuned

Figure 7: F1 scores for the welfare benefit dataset

ground truth features, which indicates that the main performance bot-
tleneck lies in feature extraction. This means that improving the ac-
curacy of the extracted features could lead to substantial gains in
symbolic reasoning and overall pipeline performance.

4.4  Explainability

One of the main objectives of this paper is to introduce an explainable
system for legal decision-making. While Assumption-Based Argu-
mentation is, in principle, an inherently transparent and explainable
argumentation framework, the symbolic rules learned by ABALearn
in practice may fall short of this ideal.

By using ABA, users can trace which rules and assumptions lead
to a particular conclusion, providing a transparent decision-making
process We show below some of the rules learned by the neuro-
argumentative pipeline.

o)

% Learned rules
dut (A) :—- alpha_1(A), dmg(A), ico(A), wvun(A).
dut (A) :— alpha_2(A), cau(A), dmg(A), ila(A).

c_alpha_29(A) :- dmg(A), ico(Ar), ift(a),
ila(A), jus(A), prp(d),
vst (A), vun ().

We can see that the learned ABA frameworks can sometimes in-
clude a large number of assumptions and contraries, and rules with
long and complex bodies, which complicates the overall structure of
the framework. The reasoning behind a prediction can become diffi-
cult to follow, and the large number of rules makes it challenging to
isolate those that are relevant to a specific case outcome. These issues
appear even when learning the framework using clean, ground truth
feature values and are even worse when using features extracted from
the case descriptions, as noise and variability in the input data lead
ABALearn to introduce workarounds during learning, ultimately re-
sulting in rules that are less coherent and more difficult to interpret.

Although the foundation for explainability is present in the form of
the learned rules, further work is needed to improve the interpretabil-
ity thereof and make them more accessible to human users.

5 Conclusion

This work presents a neuro-argumentative pipeline for legal decision-
making that combines the flexibility of neural feature extraction
with the transparency of assumption-based argumentation. The
pipeline demonstrates good classification performance, with partic-
ularly strong results in the symbolic learning component, which
achieves high theoretical accuracy when provided with clean feature
inputs.

Future Work As demonstrated in our experiments, the quality of
feature extraction significantly affects both symbolic learning and
overall pipeline performance. While our proposed architecture per-
forms well on many binary features, it struggles with more nuanced
features, leading to suboptimal performance across certain feature
types. Exploring new feature extraction architectures to improve
upon the performance of the proposed ones could lead to large over-
all improvements in the pipeline’s classification performance.

Additionally, even though the rules learned by ABALearn can
be inspected to trace the reasoning behind a prediction, their inter-
pretability remains limited. The learned frameworks are often large
and complex, even when derived from a relatively small number of
features. Future work could focus on developing automated simpli-
fication tools to reduce redundancy and improve clarity, making the
learned rules more accessible to users. For example, merging log-
ically equivalent rules or pruning unnecessary literals could yield
more concise representations.

Finally, while the current pipeline has demonstrated strong perfor-
mance on synthetic datasets, futher work is required to apply it to
real-world datasets that are often characterised by incomplete, noisy,
or inconsistently structured inputs.

This paper demonstrates the promise of combining neural learning
with symbolic argumentation for legal classification tasks. Notably,
the results suggest that explainability and performance do not need
to be mutually exclusive. This work lays a foundation for further
exploration of neuro-symbolic systems in the legal domain, where
transparency in the decision-making process is paramount.
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