R-PlanGPT: Neuro-Symbolic Plan Generation via
Transformer-based Language Models

Massimiliano Tummolo **, Mattia Chiari®, Luca Putelli?, Nicholas Rossetti’, Ivan Serina® and Alfonso
Emilio Gerevini®

4University of Brescia

Abstract. R-PLANGPT is a neuro-symbolic architecture designed
to generate solution plans for classical planning problems by learn-
ing from examples. It combines a generative model (PLANGPT), a
symbolic validator (VAL) and a classical planner (LPG). PLANGPT
learns to solve new instances within the same domain as a general
policy, treating planning as a generative task and producing action
sequences given the initial state and the goal of a problem. In or-
der to guarantee the correctness of the neural model output, VAL is
called to validate every plan produced by PLANGPT. If the solution
is not valid, it is repaired by LPG. We demonstrate the capabilities
of R-PLANGPT on standard planning benchmarks, highlighting its
ability to generate valid, high-quality plans.

1 Introduction

Recent advancements in Large Language Models (LLMs) have
shown remarkable performance across various natural language pro-
cessing tasks [13, 24]. However, a broader use of these technologies
includes mathematical inference tasks [26], and code writing [25]. In
terms of reasoning abilities, although there is a basic understanding
that these model are capable or common-sense reasoning [5], an im-
portant benchmark for these abilities is automated planning [12] and,
in particular, solving planning problems [3, 11, 16, 23].

In this demo, we present R-PLANGPT, a neuro-symbolic architec-
ture that addresses plan generation as a sequence modeling task using
a GPT-based architecture. As it can be seen in Figure 1, the system is
composed by three main modules: PLANGPT, a GPT-model trained
from scratch on classical planning problems (expressed in PDDL
[10]) which learns to generate action sequences that solve planning
instances in a given domain. Since there is no theoretical guarantee
that the neural model provides the correct solution of the problem,
R-PLANGPT includes a validator [8, 15] to ensure plan soundness.
If the solution is not valid, R-PLANGPT invokes a classical planner
[4] to repair the output of the neural model and to provide a valid plan
[22]. We test R-PLANGPT on several benchmark domains from the
International Planning Competition (IPC) [20]. Our results show that
although the GPT-model reaches good results by itself, the inclusion
of the symbolic components further increase the performance, mak-
ing R-PLANGPT capable of generating valid high-quality plans.

* Corresponding Author. Email: massimiliano.tummolo@unibs.it. M. Tum-
molo was enrolled in the National Doctorate on Al conducted by Sapienza,
University of Rome with the University of Brescia.

INITIAL STATE

(5]

l—) PlanGPT
G4

Gy !

GENERATED PLAN SOL\{ED F‘LAN

Aq

PARTIAL SEED Az

As
Ay
Ag

=
=
=
=
g

GOAL STATE

Figure 1. Example of input/output for a planning problem with two fluents
in the initial state (Fp and F) and two fluents forming the goal (G and
G'1). PLANGPT generates a sequence of actions (A1, A2, A3, A4), which
is passed to a symbolic validator. If the plan is invalid, a valid prefix (e.g.,
A1, Ag) is extracted, and the LPG planner is used to repair or complete the
plan. The final plan returned is valid and complete: (A1, Ag, As, A4, Ag).

2 Background

Automated Planning is a branch of Artificial Intelligence focused on
generating a sequence of actions (a plan) that an agent can perform
to transition from an initial state to a goal state, given a formal model
of the domain [6]. While classical planners focus on solving individ-
ual problem instances, Generalized Planning (GP) instead seeks to
derive general policies that solve several problems within a domain.

A general policy [9] is a mapping from states (or observations) to
actions, enabling an agent to solve previously unseen problems with-
out having to compute each solution from scratch. For instance, in the
well-known BLOCKSWORLD domain, a general policy might instruct
the agent to “clear all blocks and then stack them in goal order,” re-
gardless of the number of blocks involved. These policies provide a
compact and reusable strategy that solves different instances of the
same planning domain. Recent learning-based approaches have ex-
plored extracting general policies from solved examples, often us-
ing neural networks such as CNNs or GNNs [7, 19, 21]. However,
these typically require domain-specific encoding and provide lim-
ited expressivity or scalability. On the other hand, Transformer-based
language models have demonstrated strong capabilities in sequence
modelling tasks and show potential for learning policies from data
without handcrafted features [11, 18, 23].

3 Methodology

This section details the pipeline for training and using R-PLANGPT
for classical planning tasks. As shown in Figure 1, the system is com-
posed of a transformer-based model (PLANGPT [14]) a symbolic
validator (VAL [8]), and the LPG planner [4].

First, we create a dataset composed of solved planning instances

from classical domains written in PDDL to train the neural compo-
nent; these are generated using standard domain-specific generators,
following the IPC conventions to ensure a range of complexity. Each
problem is solved using the LPG planner, and we collect up to four
plans per instance to provide diversity. To avoid overfitting to naming
conventions, object names in problems and plans are randomized.

Next, we train from scratch the neural component of the system,
PLANGPT, which is based on a GPT architecture and receives as
input a textual prompt encoding the initial state and goal of the plan-
ning problem. The model is trained with standard cross-entropy loss
to predict the next token in a plan sequence. To prevent overfitting,
we use a custom early stopping criterion called Coverage Early Stop-
ping [14], which terminates training when the percentage of valid
plans generated on the validation set stabilizes.

At inference time, after the training, PLANGPT autoregressively
generates grounded action sequences. However, PLANGPT can gen-
erate actions with unmet preconditions or fails to complete all the
goals, thus generating an invalid plan. To check if a plan produced
by PLANGPT is a valid solution, we incorporate a symbolic val-
idator (VAL) to assess the correctness of each generated action and
to verify that each goal is satisfied at the end of the generation. To
prevent the model from generating non-applicable actions, we fur-
ther introduce the Validated Multi-Beam Search (VAL-MB) strategy,
which integrates VAL into the decoding process by validating candi-
date actions during generation and pruning invalid beams on the fly.
Finally, if the generated output is invalid or incomplete, we apply a
plan repair strategy using LPG. In this setup, a valid plan prefix is
extracted and provided as a seed to LPG, which continues the search
and produces a complete solution, combining the strengths of neural
generation with symbolic reasoning.

4 System Demonstration

As shown in Figure 2, the demo presents an interactive system de-
signed to showcase how to generate valid plans using R-PLANGPT.
The platform allows users to interact with the whole pipeline, from
problem specification to plan generation and validation.

The user begins by selecting a classical planning domain from a
predefined set (e.g., BLOCKSWORLD, LOGISTICS) and uploads a cor-
responding PDDL problem file, which includes the initial state and
goal. The system automatically parses and verifies the syntactic cor-
rectness of the uploaded file against the domain definition to ensure
compatibility. This procedure includes two key steps: (i) a conver-
sion mechanism that remaps object names not present in the model’s
vocabulary to randomly selected placeholder names from the vo-
cabulary, ensuring compatibility with the model’s tokenization; and
(i1) a check on the number of objects present in the problem. Since
PLANGPT is trained with a fixed vocabulary size and limited object
capacity, the system ensures that the number of objects in the prob-
lem does not exceed the maximum supported.If either check fails,
the user receives an error message and is asked to revise the input.

Once validated, the user can trigger the plan generation step us-
ing PLANGPT. The system supports various generation strategies:
greedy decoding, multi-beam search, sampling, or the Validated
Multi-Beam approach. In VAL-MB, the symbolic validator is in-
voked at each generation step to discard invalid actions on the fly,
enforcing plan soundness during decoding. For other decoding strate-
gies, validation is performed after the complete plan has been gen-
erated. If the generated plan is deemed valid by the VAL tool, it is
directly displayed to the user as a viable solution.

Otherwise, the validator identifies the first precondition violation,

PlanGPT Demo

Model

(

Input

Problem define (problem BLOCKS-4-0

:domain BLOCKS

Solve :objects D B A C - block

Problem INIT (CLEAR C) (CLEAR A) (CLEAR B) (CLEAR D) (ONTABLE C) (ONTABLE A
ONTABLE B) (ONTABLE D) (HANDEMPTY

1goal (AND (ON D C) (ON C B) (ON B A

Figure 2. Screenshot of the demo page.

Domain FD LAMA LPG Neural Model R-PLANGPT
BLOCKSWORLD 27.61 33.93 35.00 34.73 34.73
DEPOTS 15.15 1945 18.59 17.42 21.40
DRIVERLOG 18.79 19.73 18.59 17.08 17.46
FLOORTILE 2.00 2.00 17.36 19.64 19.64
LOGISTICS 26.41 26.55 24.99 14.02 27.12
SATELLITE 18.51 18.64 19.74 11.94 19.68
VISITALL 19.07 19.60 19.46 16.53 17.46
ZENOTRAVEL 18.85 19.82 19.22 15.71 17.51
TOTAL 146.39 159.72 172.95 147.07 175.00

Table 1. Results in terms of [IPCQ of R-PLANGPT, with respect to
classical planners (FD, LAMA and LPG) and the neural model PLANGPT.

and the system extracts the longest valid plan prefix. At this point,
the user is offered the option to invoke LPGto repair or complete
the plan. LPG uses the prefix as a seed to guide its search process,
producing a valid plan more efficiently than starting from scratch.

Once the solution is obtained, the output is displayed, and the user
is shown the generated plan, a summary of the selected domain and
problem, and the validation results if requested.

5 System Evaluation

We evaluate R-PLANGPT on a suite of classical planning
benchmarks, demonstrating its effectiveness. The IPCScore-Quality
(IPCQ) metric evaluates the quality of solutions of a planning sys-
tem by comparing each plan’s cost to the best-known plan for
the same problem. Higher scores indicate plans that are closer to
optimal, while unsolved problems score zero. As shown in Ta-
ble 1, R-PLANGPT outperforms all other approaches in terms of
IPCQ, achieving the highest overall score of 175.00 on the IPC
domains. This result demonstrates that combining PLANGPT with
LPG as a post-repair step leads to plans of higher quality than ei-
ther PLANGPT or symbolic planners alone. Despite the good per-
formance of the neural model by itself, the integration of a symbolic
planner improves it in domains where PLANGPT alone struggled,
such as LOGISTICS, SATELLITE, and DEPOTS. Moreover, it reaches
the performance of LPG and LAMA in most domains.

6 Conclusion

In this demo, we have presented R-PLANGPT, a system that in-
tegrates language models with symbolic tools for solving classi-
cal planning problems. Future developments will focus on sup-
porting nondeterministic planning, incorporating macro-actions and
temporal logic, enhancing interpretability, or other forms of neuro-
symbolic integration [1, 2, 17].

7 Acknowledgements

This work has been supported by: MUR (Italian Ministry of Uni-
versity and Research) PRIN-2020 project RIPER (n. 20203FFYLK);
PNRR MUR project PEO000013-FAIR, cascade funding call, Re-
silientPlans; AI4WATER project, part of the PRIMA Programme
supported by the European Union and by MUR; and by and by Re-
gione Lombardia through the initiative "Programma degli interventi
per la ripresa economica: sviluppo di nuovi accordi di collaborazione
con le universita per la ricerca, I’'innovazione e il trasferimento tec-
nologico" - DGR n. X1/4445/2021.

References

(1]

(2]

(3]
[4]

[3]

(6]
(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Chiari, A. E. Gerevini, F. Percassi, L. Putelli, I. Serina, and M. Oli-
vato. Goal recognition as a deep learning task: The grnet approach. In
ICAPS, pages 560-568. AAAI Press, 2023.

M. Chiari, A. E. Gerevini, A. Loreggia, L. Putelli, and I. Serina. Fast
and slow goal recognition. In M. Dastani, J. S. Sichman, N. Alechina,
and V. Dignum, editors, Proceedings of the 23rd International Con-

ference on Autonomous Agents and Multiagent Systems, AAMAS 2024,

Auckland, New Zealand, May 6-10, 2024, pages 354-362. International
Foundation for Autonomous Agents and Multiagent Systems / ACM,
2024.

M. Chiari, L. Putelli, N. Rossetti, I. Serina, and A. E. Gerevini. On
planning through llms. In ICAPS. AAAI Press, 2025.

A. Gerevini and I. Serina. LPG: A planner based on local search for
planning graphs with action costs. In AIPS, pages 13-22. AAAI Press,
2002

M. Geva, D. Khashabi, E. Segal, T. Khot, D. Roth, and J. Berant. Did
Aristotle use a laptop? A question answering benchmark with implicit
reasoning strategies. Trans. Assoc. Comput. Linguistics, 9:346-361,
2021.

M. Ghallab, D. S. Nau, and P. Traverso. Automated planning - theory
and practice. Elsevier, 2004.

E. Groshev, M. Goldstein, A. Tamar, S. Srivastava, and P. Abbeel.
Learning generalized reactive policies using deep neural networks. In
ICAPS, pages 408-416. AAAI Press, 2018.

R. Howey, D. Long, and M. Fox. VAL: automatic plan validation, con-
tinuous effects and mixed initiative planning using PDDL. In ICTAI,
pages 294-301. IEEE Computer Society, 2004.

Y. Hu and G. De Giacomo. Generalized planning: Synthesizing plans
that work for multiple environments. In IJCAIL pages 918-923. IICAI
Org., 2011.

D. McDermott, M. Ghallab, A. E. Howe, C. A. Knoblock, A. Ram,
M. M. Veloso, D. S. Weld, and D. E. Wilkins. Pddl-the planning do-
main definition language. 1998. URL https://api.semanticscholar.org/
CorpusID:59656859.

V. Pallagani, B. Muppasani, B. Srivastava, F. Rossi, L. Horesh, K. Mu-
rugesan, A. Loreggia, F. Fabiano, R. Joseph, and Y. Kethepalli. Plans-
former tool: Demonstrating generation of symbolic plans using trans-
formers. In IJCAI, pages 7158-7162. IICAI Org., 2023.

V. Pallagani, B. C. Muppasani, K. Roy, F. Fabiano, A. Loreggia, K. Mu-
rugesan, B. Srivastava, F. Rossi, L. Horesh, and A. P. Sheth. On the
prospects of incorporating large language models (llms) in automated
planning and scheduling (APS). In ICAPS, pages 432-444. AAAI
Press, 2024.

A. Radford and K. Narasimhan.
derstanding by generative pre-training.
api.semanticscholar.org/CorpusID:49313245.

N. Rossetti, M. Tummolo, A. E. Gerevini, L. Putelli, I. Serina,
M. Chiari, and M. Olivato. Learning general policies for planning
through gpt models. Proceedings of the International Conference on
Automated Planning and Scheduling, 34(1):500-508, May 2024.

N. Rossetti, M. Tummolo, A. E. Gerevini, L. Putelli, I. Serina, and
M. Olivato. Enhancing gpt-based planning policies by model-based
plan validation. Proceedings of the 18th International Conference on
Neural-Symbolic Learning and Reasoning, 2024.

L. Serina, M. Chiari, A. E. Gerevini, L. Putelli, and I. Serina. A
preliminary study on BERT applied to automated planning. In
IPS/RiCeRcA/SPIRIT@AI*IA, volume 3345 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2022.

L. Serina, M. Chiari, A. E. Gerevini, L. Putelli, and I. Serina. Towards
efficient online goal recognition through deep learning. In AAMAS,

Improving language un-
In preprint, 2018.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

pages 1895-1903. International Foundation for Autonomous Agents
and Multiagent Systems / ACM, 2025.

T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. P. Kaelbling, and
M. Katz. Generalized planning in PDDL domains with pretrained large
language models. In AAAZ pages 20256-20264. AAAI Press, 2024.

S. Stahlberg, B. Bonet, and H. Geffner. Learning general optimal poli-
cies with graph neural networks: Expressive power, transparency, and
limits. In ICAPS, pages 629—637. AAAI Press, 2022.

A. Taitler, R. Alford, J. Espasa, G. Behnke, D. Fiser, M. Gimelfarb,
F. Pommerening, S. Sanner, E. Scala, D. Schreiber, J. Segovia-Aguas,
and J. Seipp. The 2023 international planning competition. Al Mag., 45
(2):280-296, 2024.

S. Toyer, S. Thiébaux, F. W. Trevizan, and L. Xie. Asnets: Deep learning
for generalised planning. J. Artif. Intell. Res., 68:1-68, 2020.

M. Tummolo, N. Rossetti, A. E. Gerevini, L. Putelli, I. Serina, and
M. Olivato. Integrating classical planners with gpt-based planning poli-
cies. In AI*IA, Lecture Notes in Computer Science. Springer, 2024.

K. Valmeekam, M. Marquez, A. O. Hernandez, S. Sreedharan, and
S. Kambhampati. Planbench: An extensible benchmark for evaluating
large language models on planning and reasoning about change. In
NeurIPS, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin. Attention is all you need. In
NIPS, pages 5998-6008, 2017.

Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation. In EMNLP (1), pages 8696-8708. Association for
Computational Linguistics, 2021.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou. Chain-of-thought prompting elicits reasoning in
large language models. In NeurIPS, 2022.

