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Abstract. Association Rule Mining (ARM) aims to discover pat-
terns between features in datasets in the form of propositional
rules, supporting both knowledge discovery and interpretable ma-
chine learning in high-stakes decision-making. However, in high-
dimensional settings, rule explosion and computational overhead
render popular algorithmic approaches impractical without effective
search space reduction—challenges that propagate to downstream
tasks. Neurosymbolic methods, such as Aerial+, have recently been
proposed to address the rule explosion in ARM. While they tackle the
high-dimensionality of the data, they also inherit limitations of neural
networks, particularly reduced performance in low-data regimes.

This paper makes three key contributions to association rule dis-
covery in high-dimensional tabular data. First, we empirically show
that Aerial+ scales one to two orders of magnitude better than state-
of-the-art algorithmic and neurosymbolic baselines across five real-
world datasets. Second, we introduce the novel problem of ARM in
high-dimensional, low data settings, such as gene expression data
from the biomedicine domain with ~18K features and ~50 samples.
Third, we propose two fine-tuning approaches to Aerial+ using tabu-
lar foundation models. Our proposed approaches are shown to signif-
icantly improve rule quality on five real-world datasets, demonstrat-
ing their effectiveness in low-data, high-dimensional scenarios.

1 Introduction

Association Rule Mining (ARM) is the task of discovering pat-
terns among the features of a dataset in the form of logical impli-
cations [1l], also known as if-then rules. ARM has been applied in
a myriad of domains for knowledge discovery [24] as well as for
high-stakes decision-making as part of interpretable machine learn-
ing models [33} 2]. High-dimensional datasets, e.g., with thousands
of columns, often lead to rule explosion and prolonged execution
times [25]]. Common solutions to rule explosion in ARM include con-
straining data features (i.e., ARM with item constraints [36, 4} 45]),
mining top-k high-quality rules [6} 27], and closed itemset min-
ing [46]. However, these methods mainly focus on reducing the
search space for knowledge discovery, rather than directly addressing
the computational burden.

Neurosymbolic methods for ARM, such as Aerial+ [16], have
been recently proposed to address the rule explosion problem on tab-
ular data. Despite its effectiveness in addressing the rule explosion
problem in generic tabular data, Aerial+ has not yet been evaluated

* Corresponding Author. Email: e.karabulut@uva.nl.

Table 1: Sample d > n dataset and association rules. Gene ex-
pression datasets in tabular form often consist of 10K+ columns and
a limited number of rows. This is a sample gene expression level data
from [7]], partially pre-processed by [34] and put in discrete form af-
ter applying z-score binning. Listed association rules are learned us-
ing Aerial+ [16] with item constraints on low and high values.

Sample / Rule Gene_1 Gene_2 Gene_3 --- Gene_18107 Gene_18107

Sample_1 normal normal normal --- normal normal
Sample_2 normal normal high normal high
Sample_3 normal normal normal --- normal low
Rule_1 Gene2 (high) A Gene29 (high) — Genel4 (low)
Rule_2 Gene3 (high) A Gene45 (high) — Gene84 (high)

on high d-dimensional datasets for scalability. Moreover, neurosym-
bolic methods for ARM also inherit the limitations of neural net-
works, such as reduced performance in low-data (n) regimes [23]].

As is the case for several data-driven methods, Aerial+ relies on
statistical patterns present in the dataset. In small datasets, such pat-
terns may be hard to extract, which in turn may lead to reduced
predictive performance, and in the case of Aerial+, to rules that do
not accurately capture the true underlying patterns. Recent works
on models for tabular data have addressed this issue by introduc-
ing foundation models [12| 130, [13| 44, [37]], which are pre-trained
on large datasets and transferred to small datasets without additional
training, thereby providing strong inductive biases and generalizable
representations that compensate for the limited data instances.

In this paper, we make three key contributions to ARM research
on categorical tabular data. First, we evaluate the scalability of both
commonly used algorithmic ARM approaches as well as the recent
Neurosymbolic methods on high d-dimensional datasets. Second,
to the best of our knowledge, we introduce the problem of ARM
on d > n datasets for the first time, which are common in the
biomedicine domain, such as gene expression datasets [7] (see Table
[I), and evaluate the recent neurosymbolic methods on such datasets
in terms of rule quality. Third, we propose two fine-tuning meth-
ods for neurosymbolic ARM methods that rely on tabular foundation
models for addressing the low-data regime.

Our empirical results show that: 1) Aerial+ scales one to two orders
of magnitude faster on high-dimensional datasets compared to state-
of-the-art ARM methods (Section [3), ii) neurosymbolic methods
need longer training to find high-quality association rules on d > n
datasets (Section[d)), iii) our two proposed fine-tuning methods allow
Aerial+ to learn significantly higher quality rules in small datasets
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Figure 1: Aerial+ [16] ARM pipeline consists of: i) converting given categorical tabular data into transactions by one-hot encoding, ii) vec-
torizing the one-hot encoded data, iii) training an under-complete denoising Autoencoder with a reconstruction loss and to output probability
distributions per column, iv) and extracts association rules by exploiting the reconstruction ability of autoencoders, based given probabilistic

antecedent and consequent similarity thresholds.

(Section E[) The results indicate that neurosymbolic methods, espe-
cially when supported with tabular foundation models, can enable
scalable and high-quality knowledge discovery in high-dimensional
tabular data with few instances (Section[3).

2 Related Work

This section presents a formal definition of ARM on categorical tab-
ular data, the problem of high-dimensional data with few instances,
neurosymbolic ARM methods, and tabular foundation models.

Association rule mining. Following the original definition of
ARM in [ll, let I = {i1,%2,...,%m } be a set of m items, and let
D = {t1,ta,...,tn } be a set of n transactions where V¢t € D,t C I
meaning each transaction ¢ consists of a set of items in /. An associ-
ation rule is of the form X — Y, where X,Y C I, is a first-order
Horn clause with at most one positive literal, |Y| = 1 and | X| > 1,
in its Conjunctive Normal Form (CNF) (=X VY),and X NY = @.
Note that p — ¢ A r can be rewritten as p — ¢q and p — 7, (i.e.,
p,q,r € I). X is often referred to as the antecedent while Y is the
consequent side of the association rule. Example association rules
are given in Table[]] A rule X — Y is said to have support per-
centage s if s% of ¢ € D contain X U Y, while the confidence of
a rule is defined as %. ARM has initially been defined
as the problem of finding rules that have higher minimum support
and confidence values than a given user-defined threshold. The state-
of-the-art in ARM literature has a plethora of sub-problems and so-
lutions which can be found in [24] [T9]]. Categorical tabular data is
often converted to a set of transactions via one-hot encoding, where
each encoded value represents the presence (1) or absence (0) of a
column-value pair, corresponding to items in I, and each row corre-
sponds to a transaction in D.

ARM for high-dimensional small data. Having high-
dimensional data with a limited number of samples is common
in domains such as biomedicine, as in gene expression datasets [[7]
where there are 10K+ columns (different genes) and less than 100
rows (samples, e.g., patients). High-dimensionality of data has many
solutions in the ARM literature, as it leads to rule explosion and,
therefore, prolonged execution times. Existing methods include:
i) mining rules for items of interest rather than all items, known
as ARM with item constraints [36] 4} [43], ii) mining top-k high-
quality rules based on a given rule quality criteria [6} and, iii)

reducing rule redundancy by identifying only frequent itemsets
without frequent supersets of equal support, known as closed itemset
mining [46]. Aerial+ [16] (and the earlier version Aerial [18]), is
a neurosymbolic method that is orthogonal to many of the existing
solutions and leverages neural networks to learn a concise set
of high-quality rules with full data coverage. Despite showing
promising results on generic tabular datasets, it has not yet been
evaluated on high-dimensional data. Furthermore, we argue that
utilizing neural networks for ARM inherits neural networks-specific
issues into ARM, most notably the reduced performance issue in
low-data regimes [23]]. To the best of our knowledge, the low-data
scenarios in ARM have not yet been addressed, as employing neural
networks for ARM is a new paradigm shift.

Neurosymbolic methods for ARM. Neural networks have been
used to mine association rules directly from tabular data in the past
few years. Patel and Yadav [28] proposed the first approach that
identifies frequent itemsets before constructing rules, but the work
lacks an explicit algorithm or source code. Berteloot et al. [5]] intro-
duced ARM-AE, an autoencoder-based [3]] method to mine associ-
ation rules directly. Aerial+ tackles the rule explosion problem
in ARM by using an under-complete denoising autoencoder [40] to
learn a compact data representation, and by introducing a more scal-
able extraction method than ARM-AE (Figure [T). This results in a
smaller set of high-quality rules with full coverage over the data.
Both Aerial+ and ARM-AE are neurosymbolic methods, combining
neural models with symbolic rule extraction (Figure [2). However,
Aerial+ has not yet been evaluated on high-dimensional datasets,
which we address in this work.
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Figure 2: Boxology [38] diagram of neurosymbolic ARM approaches
such as Aerial+: i) a neural model of data (i.e., tabular data) is
learned, ii) an algorithm (symbolic) infers rules (symbols) from the
model using hypotheses (symbols, as in test vectors of Aerial+).



Table 2: High-dimensional tabular gene expression datasets with few
instances, used in all experiments [43} [14} |8, [7].

Dataset # Columns  # Rows
Chondrosarcoma 18006 6
SmallCellLungCarcinoma 18237 60
NonSmallCellLungCarcinoma 18108 86
BreastCarcinoma 18061 51
Melanoma 17902 55

Tabular foundation models are large neural networks pre-trained
on vast collections of tabular data to capture table semantics and
support diverse downstream tasks [32]. Among them, Tabular Prior-
data Fitted Network (TabPFN) [12] is trained on millions of syn-
thetic tables generated via structural causal models [29], and supports
classification and regression. Other recent tabular foundation models
include CARTE [20], which leverages graph-based representations
trained on real-world knowledge graphs [11]; TabICL [30], which
frames tabular learning as in-context learning; Tabbie [13], which
uses masked token modeling for pretraining; and TableGPT [37],
which adopts large language models for table understanding. Cru-
cially, TabPFN is the only continuously maintained model that ex-
plicitly exposes an interface to extract table embeddings, which we
utilized to develop fine-tuning strategies for Aerial+’s autoencoder
architecture to learn higher-quality association rules in tables with a
low number of rows

3 ARM on high-dimensional datasets

Given the focus on low-dimensional datasets in prior work on ARM,
we begin with an empirical evaluation of the scalability of the state-
of-the-art algorithmic and neurosymbolic ARM methods on high-
dimensional categorical tabular datasets with few instances. Specifi-
cally, we aim to answer: how does the runtime cost of current ARM
methods scale in the case of high-dimensional datasets?
Open-source. All the source code and datasets used in all the ex-
periments can be found in https://github.com/DiTEC-project/rule_
learning_high_dimensional_small_tabular_datal
Hardware. All experiments are run on a 12th Gen Intel® Core™
i5-1240P x 16 CPU, with 16 GiB memory, and 512 GB disk space.
No GPUs were used, and no parallel execution was conducted.
Datasets. We use 5 d > n gene expression datasets from
[43) 114} 18 [7]] (listed in Table E]), which are pre-processed accord-
ing to the procedure described in [26] by [34]. The pre-processing
consists of the trimmed mean of m-values normalization, log trans-
formation (i.e., log(x + 1)), and the expression values were made to
have zero mean and unit standard deviation. Furthermore, to enable
ARM on gene expression datasets, we applied z-score binning with
one standard deviation as the cutoff to discretize values into high,
low, and medium gene expression levels, as exemplified in Table[T}
Algorithms. We run the state-of-the-art neurosymbolic ARM
method Aerial+ [16], commonly used algorithmic methods,
ECLAT [47] and FP-Growth [10], as well as ARM-AE [5] on all
the datasets given in Table 2} FP-Growth remains one of the most
widely used ARM algorithms due to its efficiency and adaptabil-
ity. Numerous variations to FP-Growth have been proposed to mit-
igate rule explosion and improve scalability, including Guided FP-
Growth [335] for item-constrained mining, parallel FP-Growth [22]],
and GPU-accelerated versions [15]] for faster execution. Note that

1 We rely on the implementation available at https:/github.com/PriorLabs/
TabPFN|

Table 3: Evaluated algorithms and hyperparameters for fair ARM
comparison on high-dimensional, low-sample tabular data (R =
Aerial+ rules, C = Columns).

Algorithm  Type Parameters

Aerial+ Neurosymbolic a =2,7, =0.5,7. =0.8
ARM-AE Neurosymbolic ~ M=2, N=|R|/|C|, L=0.5

FP-Growth Algorithmic (both) antecedents = 2, min_conf=0.8,
ECLAT Algorithmic min_support=0.5 * E[support(R)]

Aerial+ also supports item constraints, parallel, and GPU executions.
However, we only compare the basic version of each algorithm.
Experimental setup and hyperparameters. To ensure a fair
comparison, we set the hyperparameters of each method (shown in
Table[3) as follows: 1) number of antecedents is set to 2 for all meth-
ods, ii) Aerial+’s antecedent similarity threshold (7,) and ARM-AE’s
likeness (L) are set to 0.5, iii) Aerial+’s consequent similarity thresh-
old (7.) and minimum confidence of the algorithmic methods are set
to 0.8, iv) minimum support threshold of the algorithmic methods
are set to half the average support of the rules learned by Aerial+,
to ensure comparable average support values, v) ARM-AE’s num-
ber of rules per consequent (V) is set to Aerial+’s rule count divided
by the number of columns to ensure comparable rule counts, vi) and
both Aerial+ and ARM-AE were trained for 10 epochs with a batch
size of 2. Aerial+ is implemented using the pyAerialE] [[L7] library,
FP-Growth is implemented using MLxtend [31], ECLAT is imple-
mented using pyECLATEL and ARM-AE is implemented using its
original repository [ﬂ The goal of this experimental setup is to test
the scalability of the algorithms, and not to perform a rule quality
comparison, which has already been done in earlier work [16].
Results. Figure [3] shows the execution time of each method, in
seconds on a logarithmic scale, on 5 datasets as the number of
columns increases. Execution times include both training and the rule
extraction times for the neurosymbolic methods. The results show
that Aerial+ has one to two orders of magnitude faster execution
times than the other methods. The gap in execution time increases
as the number of columns increases. We also see that the algorith-
mic method FP-Growth runs faster when the number of columns is
smaller than 30. This shows that Aerial+’s training is only compen-
sated if the tables have more than 30 columns. Note that Aerial+ has
linear time complexity during training and polynomial time over the
number of columns (after one-hot encoding) during the extraction.

4 Neurosymbolic ARM in low-data regime

Experiments in Section [3| showed that the fastest algorithmic so-
lution, FP-Growth, takes ~10% seconds on tables with only 150
columns and 2 antecedents, while a neurosymbolic method, Aerial+,
runs one to two orders of magnitude faster. This empirically validates
the scalability of neurosymbolic approaches to ARM. However, we
argue that Aerial+ also inherits the known issues in neural networks,
particularly the decline in performance in a low-data regime [23].
Concretely, Aerial+ relies on training a deep autoencoder on the tab-
ular data with a reconstruction objective. Following results from sta-
tistical learning theory [39] and empirical observations in neural net-
works [48]], this implies that Aerial+’s performance is bounded by
the number of training samples, and with small data it may yield
rules that do not accurately capture ground-truth associations.

2 https://github.com/DiTEC-project/pyaerial
3 https://github.com/jeffrichardchemistry/pyECLAT
4 https://github.com/TheophileBERTELOOT/ARM-AE/tree/master
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Figure 3: Scalability on high-dimensional tabular data. Execution times of algorithmic and neurosymbolic (including training and rule
extraction time) ARM approaches in seconds on a logarithmic scale, as the number of columns increases gradually. Aerial+ has one to two
orders of magnitude better scalability on high-dimensional datasets compared to other methods. Lower performance of Aerial+ with a smaller
number of columns is due to the training procedure, which implies that algorithmic methods are faster on lower-dimensional (columns) tables.

An effective approach for addressing data scarcity is fransfer
learning [41], which requires training a neural network, or vector
representations (i.e. embeddings) on a large dataset, that then can be
transferred to a downstream task on a small dataset. This provides a
starting point that can improve performance in comparison to learn-
ing from scratch on a small dataset.

In this work, we propose two fine-tuning strategies to Aerial+ us-
ing TabPFN [12], a foundation model for tabular data that has been
pre-trained over millions of tables, which we use to generate embed-
dings for the small datasets in our experiments.

4.1 Fine Tuning with Pre-trained Weight Initialization

Figuref]illustrates the fine-tuning strategy introduced in this section
(Aerial+WI). On a high level, table embeddings from a tabular foun-
dation model are utilized to initialize the weights of Aerial+’s under-
complete denoising autoencoder, providing a semantically meaning-
ful starting point for learning compact data representations.

Let X € R™*? denote the tabular dataset and y € R™ the corre-
sponding labels. We first compute fixed-length embeddings for each
row in X using a pretrained TabPFNClassifier. These embeddings,
denoted as E € R™*% where d. is the embedding dimension, are
generated via a 10-fold TabPFN-based meta-learning scheme:

E= fTabPFNClassiﬁer(X7 y)

We then one-hot encode X into X € R™*% following the original
Aerial+ pipeline, where d’ is the total number of binary features after
encoding categorical attributes. A two-layer projection encoder gg :
RY — R% is trained to map X to the TabPEN embedding space.
The encoder architecture is as follows:

go(Z) = W - Dropout(o(LayerNorm(W1Z + b1))) + b2

where Wy € R"*? W, € R%*" ] is the hidden dimension, o is
the LeakyReL U activation with a negative slope of 0.01, and Layer-
Norm and Dropout (p = 0.1) are applied for regularization.

The projection encoder is trained using a cosine loss function to

align go(X) with E: n
1
) =1-= #), B
£0) = 1= > cos (3@, )

Training is performed using Adam optimizer [21] for 25 epochs with
early stopping if the validation loss plateaus (with early stopping pa-
tience of 20 and a minimum improvement threshold of 10~*). After
training, the weight matrix W, and bias b1 from the first layer of g
are used to initialize the corresponding parameters in the first layer
of Aerial+’s encoder:

Aerial+£,}c> — (Wi, b1)

Tabular Data: X € R"? Table Embeddings: E € R™*%
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Figure 4. Fine tuning with pre-trained weight initialization
(Aerial+WI): i) tabular data is embedded via a tabular foundation
model, ii) a projection encoder is trained to align table embeddings
with pre-processed Aerial+ input tabular data using a cosine loss ob-
jective, iii) and first-layer weights and biases of Aerial+’s encoder is
initialized via the projection encoder, providing a semantically mean-
ingful starting point.



This initialization provides a strong inductive prior for Aerial+,
guiding its encoder to start from a semantically meaningful repre-
sentation space derived from TabPFN’s meta-learned embeddings.

Note that the gene expression datasets contain no predefined class
labels. Therefore, a random column is selected as the target variable
to enable TabPFN embedding generation.

4.2 Projection-Guided Fine Tuning via Double Loss

Figure 5] visualizes the fine-tuning strategy described in this section
(Aerial+DL). Conceptually, this strategy uses a projection encoder to
align Aerial+ reconstructions with table embeddings from a tabular
foundation model, jointly optimizing reconstruction and alignment
losses for semantic consistency.

Building on the projection encoder gg described in Section [.1]
this second fine-tuning strategy aligns the Aerial+’s autoencoder re-
constructions with TabPFN embeddings using a double loss function.

Unlike the first strategy, where go was trained directly on raw one-
hot inputs, here we first pass a corrupted version of the one-hot in-
put X through Aerial+’s initial autoencoder fy and train gy on its
outputs. Specifically, we generate noisy inputs (following the same
strategy as Aerial+):

X =clip(X +¢), e~N(0,0°)
where 0 = 0.5 and values are clipped to [0,1]. We then compute
reconstructions X’ = fo(X ) The projection encoder is trained to
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Figure 5: Projection-Guided Fine-Tuning via Double Loss
(Aerial+DL): i) tabular data is embedded via a tabular foundation
model, ii) a projection encoder is trained to align table embeddings
with reconstructed Aerial+ output of the tabular data, using a co-
sine loss, iii) during Aerial+ autoencoder training, a new objective
of aligning projection encoder output with the table embeddings is
added to the reconstruction loss, supporting semantic alignment of
the autoencoder reconstruction process to the table embeddings.

map these reconstructions to their corresponding TabPFN embed-
dings B € R"*%:
90(27) = E:

by minimizing the cosine distance loss:

After this pretraining phase, gy is frozen, and Aerial+’s autoen-
coder is fine-tuned using a double loss objective:

&) + Lowoj(go (fo(Z)), E)

where Lrecon is @ binary cross-entropy loss applied to per one-hot
encoded column value as in Aerial+, generating probability distri-
butions per column. The double loss strategy encourages Aerial+’s
autoencoder to not only reconstruct the original data, but also to pro-
duce representations that are semantically consistent with TabPFN’s
meta-learned embedding space.

[,(0) = Erecon(fH(‘%)7

4.3 Experimental Results

Setup and hyperparameters. We run Aerial+ and the two fine-
tuned versions, with pre-trained weight initialization (Aerial+WI)
and double loss (Aerial+DL), on 5 d > n datasets with 100 columns
and compare their rule quality. The default Aerial+ uses Xavier [9]
weight initialization as in the original work. All the approaches
are run with 2 antecedents, for 25 epochs with a batch size of 2.
Aerial+’s autoencoder for both the default and the fine-tuned ver-
sions consists of 2 layers per encoder and decoder, with the dimen-
sions X — 50 — 10, and the mirrored version for the decoder. We
run each method 50 times and present the average rule quality results
for robustness.

Evaluation criteria. The standard rule quality metrics from the
ARM literature are used as the evaluation criteria [24} [19]. Let
D be a set of transactions as introduced in Section 2] and R =
{ 1,72, ceny rt} be the rule set learned by each approach where Vr; €
R, T, = (XZ — Y;,)

e Number of rules. Total number of rules learned:| R|

e Average rule coverage. Average number of transactions where
the rule antecedent appears: AvgCov = \RI Z‘Rl {t € D |
Xi Ct}

e Average support. Average fraction of transactions containing
both antecedent and consequent:

Rl

1 {te D|X;UY; Ct}
AvgSupp = = > =
VEIPP T R) 2 D]

e Average confidence. Average conditional probability that the con-
sequent appears given the antecedent:

|R|

-
AvgConf = IRIZ {t€D|X:UY: €t}

{t € D | X; Ct}

o Total data coverage. Fraction of transactions covered by at least
one rule antecedent:
‘U'R‘ {teD|X;Ct}

TotalCov =
| D




Table 4: Rule quality of Aerial+ in low-data regime. Fine-tuning Aerial+ with the weight initialization (Aerial+WI) and double loss
(Aerial+DL) methods based on TabPFN embeddings consistently outperformed the default version in rule confidence and association strength
(Zhang’s). Fine-tuning produced fewer rules with lower data coverage on 3 of 5 datasets, as expected due to the elimination of relatively
obvious (low-association-strength) rules. Execution time increased by only a few seconds, which is negligible in a low-data regime.

Approach  #Rules ~Rule Coverage ~Support ~Confidence Data Coverage ~Zhang’s Metric Exec. Time (s)
Chondrosarcoma
Aerial+ 200 0.23 0.21 0.921 0.533 0.784 2.25
Aerial+WI 75 0.217 0.206 0.945 0.524 0.813 5.80
Aerial+DL 75 0.235 0.219 0.947 0.536 0.828 5.36
SmallCellLungCarcinoma
Aerial+ 1576 0.068 0.041 0.579 0.835 0.476 10.58
Aerial+WI 664 0.076 0.052 0.633 0.715 0.577 13.48
Aerial+DL 1338 0.070 0.044 0.597 0.816 0.513 18.23
NonSmallCellLungCarcinoma
Aerial+ 1620 0.059 0.035 0.584 0.823 0.554 18.03
Aerial+WI 978 0.078 0.057 0.663 0.698 0.639 28.67
Aerial+DL 1453 0.053 0.028 0.547 0.849 0.501 24.27
BreastCarcinoma
Aerial+ 1017 0.072 0.046 0.641 0.816 0.575 9.64
Aerial+WI 590 0.077 0.052 0.686 0.686 0.644 12.09
Aerial+DL 535 0.078 0.050 0.652 0.761 0.590 15.31
Melanoma
Aerial+ 1220 0.067 0.035 0.545 0.888 0.440 13.09
Aerial+WI 773 0.070 0.038 0.575 0.772 0.496 13.19
Aerial+DL 859 0.071 0.038 0.566 0.860 0.461 16.49

e Average Zhang’s metric [42]. Average statistical dependence be-
tween antecedent and consequent beyond chance:
1 IR
AvgZhang = "l ZZhang(Xi =Y)
i=1

where:

conf(X; — Y;) — conf(X; —Y;)

Zhang(X; = Y;) = i
el ) maz(conf(X; — Y;),conf(X; — Y3))

with conf being the confidence score of a rule and X; referring to
the absence of X; in D.

e Execution time. Sum of model training time, fine-tuning (when
applicable), and rule extraction time in seconds.

Results. Table [] shows the rule quality evaluation results of
Aerial+ and the two fined-tuned versions Aerial+WI and Aerial+DL
on 5 datasets. The results show that Aerial+WI outperforms Aerial+
in terms of rule confidence and association strength (Zhang’s metric)
on all 5 datasets. Aerial+DL’s confidence and association strength
also exceed Aerial+’s on 4 out of 5 datasets, except the NonSmall-
CellLungCarcinoma dataset. Both fine-tuning methods resulted in a
smaller number of rules on all datasets and with a smaller data cov-
erage on 3 out of the 5. This is expected as the fine-tuned versions
capture rules with higher association strength on average, meaning
the less obvious rules are eliminated during the rule extraction pro-
cess, and therefore, the final data coverage was lower. The fine-tuned
methods have higher support values on 4 out of 5 datasets. However,
we do not take the high support values as a positive sign, as it de-
pends on the application. For instance, high support rules are good at
explaining trends in the data, while low support rules can be better at
explaining anomalies. Lastly, fine-tuning resulted in only a few sec-
onds of increment in the execution time, which is negligible in the
low-data regime. Note that the costliest operation in Aerial+ is the
rule extraction process and not the training (or pre-training), which
is not significantly affected by the fine-tuning methods.

5 Discussion

The section discusses the experimental results, the role of neurosym-
bolic methods, and tabular foundation models in ARM.

Neurosymbolic methods scale better on high-dimensional
data. Experiments in Section 3] show that Aerial+, a neurosymbolic
method to ARM, has execution speed of one to two orders of mag-
nitude faster than the algorithmic ARM approaches. We argue this
is because Aerial+ leverages neural networks’ ability to handle high-
dimensional data, it has linear complexity over the number of rows
in training, and polynomial time complexity over the number (one-
hot encoded) columns during the rule extraction stage. Algorithmic
methods, on the other hand, rely on counting the co-occurrences of
itemsets in the data, which is a costlier operation.

Aerial+ inherits neural networks-specific issues into ARM. The
scalability of Aerial+ on high-dimensional data comes at a cost, most
notably the reduced performance in the low-data regime for ARM.
The original paper of Aerial+ trains only for 2 epochs on generic
tabular datasets and was able to obtain high-quality rules. In the low-
data regime, however, we were able to get high-quality rules con-
sistently in each execution only after training for 25 epochs. This
shows that while the neurosymbolic methods can help in scalability,
they also introduce a new research problem into the ARM literature,
namely, rule mining in the low-data regime.

Fine-tuning Aerial+ for better knowledge discovery. Experi-
ments in Section ] showed that our two proposed fine-tuning meth-
ods using the tabular foundation model TabPFN resulted in signif-
icantly higher-quality rules in comparison to the default version of
Aerial+ on 5 real-world high-dimensional tabular datasets with few
instances. Many of the other tabular foundation models that we in-
vestigated, including Tabbie, CARTE, TableGPT, and TabICL, do not
provide an interface to obtain table embeddings. Therefore, we were
not able to use them in our experiments. Since TabPFN is trained to
perform classification and regression tasks over tabular data, we ex-
pect that models explicitly trained to learn column embeddings and
associations could potentially result in better rule quality.



Neurosymbolic methods start a paradigm shift in ARM. We
show that the Neurosymbolic ARM methods can be supported by
prior-data fitted networks, as in TabPFN, to learn higher-quality
rules. This raises the research question of what other types of prior
data or background knowledge can be utilized as part of ARM?
We invite researchers to further investigate neurosymbolic methods
for ARM, as the neurosymbolic integration brings an immense po-
tential for both knowledge discovery and fully interpretable inference
across a plethora of domains.

Further validation of our approach and limitations. The al-
gorithmic methods strictly depend on the distribution of data when
mining rules in terms of execution time, as denser datasets where
many frequent itemsets of high support are present will eventually
prolong the execution time. Aerial+, however, applies the exact same
polynomial-time rule extraction process regardless of the density of
the data, and therefore depends less on the dataset attributes. How-
ever, we will still test our fine-tuning approaches on more datasets
from diverse domains to further validate our approach in future work.
Furthermore, we will evaluate our approach on generic tabular data
with higher numbers of instances, i.e., n > d, to see whether it
leads to early convergence or higher quality rules. Our proposed
fine-tuning strategies are currently limited to the only available tab-
ular foundation model with an explicit table embedding interface,
TabPFEN. Since TabPFN is specifically trained for classification and
regression, this limitation may restrict performance improvements,
and a future foundation model trained to capture column associations
explicitly could significantly improve rule discovery.

6 Conclusions

This paper highlights the potential of neurosymbolic methods in the
domain of association rule mining (ARM), especially under high-
dimensional and low-sample (d > n) settings common in do-
mains such as biomedicine. We have empirically shown that Aerial+,
a neurosymbolic approach, offers substantial scalability improve-
ments compared to the state-of-the-art neurosymbolic and algorith-
mic ARM techniques, scaling one to two orders of magnitude faster.
However, neurosymbolic ARM also inherits the known issues of neu-
ral networks into ARM literature, specifically the reduced perfor-
mance in low-data regimes, which we addressed through two targeted
fine-tuning strategies.

Our fine-tuning methods use table embeddings from TabPEN, a
tabular foundation model, to i) initialize the weights of Aerial+
(Aerial+WTI), ii) and to better semantically align Aerial+ autoencoder
training with a given tabular data (Aerial+DL). The results show that
both Aerial+WI and Aerial+DL methods significantly improved rule
quality in low-data settings. This demonstrates the promising role
of pretrained tabular models in enhancing knowledge discovery over
tabular datasets besides classification and regression tasks that are
commonly tackled in the tabular data domain.

Looking forward, we see this as the beginning of a broader
paradigm shift in ARM, where background knowledge and pre-
trained models can be explicitly leveraged to guide rule extraction.
We invite the community to explore what other forms of prior knowl-
edge, architectures, or foundation models can be integrated into neu-
rosymbolic ARM. Future work will also validate our methods across
a wider range of datasets and evaluate their effectiveness in high-
instance scenarios (n > d), with the aim of achieving both scalabil-
ity and high interpretability in real-world data mining applications.
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