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Abstract. Recent advances in Large Language Models have
demonstrated that Transformer-based architectures can support
symbolic-like reasoning without explicit symbolic formalisms. How-
ever, these models remain resource-intensive, opaque, and some-
times limited in systematic generalization and memory control. This
paper reviews a set of biologically inspired mechanisms that may of-
fer more efficient and flexible alternatives for implementing reason-
ing in neural systems, or even introduce new design principles. We
explore models that address variable binding, compositionality, con-
textual inference and embedding, neuro-symbolic integration, and ar-
chitectural designs inspired by neuroscience. They reveal how sym-
bolic operations can emerge from continuous, distributed neural dy-
namics.

1 Introduction

In early 2025, there was a significant shift in the landscape of Ar-
tificial Intelligence (AI) when Large Language Models (LLMs) ca-
pable of robust multi-step reasoning entered the mainstream. These
Transformer-based systems now demonstrate emergent algorithmic
behaviors in a wide range of tasks, without explicit internal sym-
bolic representations. As a result, biologically inspired approaches
to reasoning, which once seemed essential for integrating neural and
symbolic systems, seem to have lost their sense of urgency and even
necessity.

However, the efficiency and interpretability challenges faced by
LLMs raise new questions about the role that neuroscience can still
play in the design of reasoning systems. Despite their impressive per-
formance, current models remain highly resource-intensive, as they
require massive datasets and extensive computation to achieve their
results. In contrast, biological systems perform coherent composi-
tional reasoning using far fewer resources. This motivates a look
at brain-inspired computation, not as an alternative to Transformers,
but as a potential source of principles for improving their scalability,
modularity, and reasoning capabilities.

Although many studies explore neuro-symbolic (NS) methods, we
focus on a smaller group of works that seem especially relevant to
improving reasoning in LLMs. Rather than aiming for comprehen-
sive coverage or classifying existing hybrid architectures, these ex-
amples were chosen for their potential to suggest concrete principles
that could inspire more efficient neural systems. Also, while logic
has long been considered the epitome of reasoning, and many works
combine neural architectures with logical inference, we place less
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emphasis on these approaches in this survey. This is not due to their
lack of value, but because we view logical reasoning not as an in-
nate product of brain function, but as a learned, constrained mode of
thought that appears under specific conditions. Instead, we analyze a
range of biologically inspired mechanisms that could inform or com-
plement reasoning in artificial systems, and illustrate how symbolic-
like behavior can emerge from dynamic, distributed processes.

Several recent works have also surveyed the growing field of
neuro-symbolic integration and brain-inspired Al. For example,
[43] presents a taxonomy of NS learning systems, and emphasizes
three paradigms: learning for reasoning, reasoning for learning, and
learning-reasoning. It covers technical models and application do-
mains, but its scope is broad and not specifically tailored to reason-
ing methods. Similarly, [3] offers a wide-ranging overview of NSAI,
with a focus on representation, learning, and decision making for
fields such as robotics and healthcare. Another review [26] explores
NS approaches for Artificial Intelligence of Things (AloT) appli-
cations, while [23] discusses biologically inspired strategies in the
broader effort to realize Artificial General Intelligence (AGI).

This survey highlights five key aspects of reasoning in neural sys-
tems that align with mechanisms observed in biological cognition.
These include the ability to maintain variable identity and role as-
signment, the formation and reuse of abstract functional components,
the encoding of context-sensitive information, the integration of sym-
bolic computation with neural dynamics, and the use of biologically
inspired memory and control architectures. Thus, in the rest of the
article, we analyze techniques relevant for variable binding (Section
2), compositionality (Section 3), handling context and embeddings
(Section 4), neuro-symbolic and hybrid systems (Section 5), and ar-
chitectures inspired by neuroscience (Section 6). This perspective al-
lows us to extract some insights from neuroscience and assess their
applicability to current or future reasoning models.

2 Variable Binding

Understanding how variable binding is implemented in neural sys-
tems, both artificial and biological, is central to explaining and im-
proving reasoning. We begin with a study of LLMs, which already
exhibit symbolic-like behavior, and then explore progressively more
biologically grounded mechanisms that achieve similar goals.

The manner in which Transformer-based LLMs perform variable
binding during in-context reasoning tasks is analyzed in [9]. The au-
thors formalize the binding problem as the need to associate each en-
tity with the correct attribute in multi-entity contexts. Through causal



interventions, they uncover a distributed mechanism in which “bind-
ing ID” vectors are added to the base representations of entities and
attributes. These vectors reside in a continuous subspace, are inde-
pendent of token position, and allow LLMs to perform queries with
factorizable and position-invariant behavior. The binding vectors
transfer across tasks and models, which suggests that LLMs implic-
itly learn a general-purpose representational subspace for symbolic
associations. This mechanism reveals how standard Transformer ar-
chitectures can internally implement reasoning via learned, reusable
vector-based operations.

Although Transformer LLMs can succeed in binding using learned
vector representations, their architecture lacks explicit mechanisms
for controlled storage, reuse, or indirection. The next paper [18] ad-
dresses this limitation by introducing a biologically inspired solution
based on neural gating and addressing. It presents a neurocomputa-
tional model in which the prefrontal cortex (PFC) and basal ganglia
(BG) jointly support variable binding via indirection. In this model,
one PFC region or “stripe” encodes addresses or pointers to informa-
tion stored in other PFC regions. These addresses are regulated by
BG-mediated gating mechanisms, which control when specific bind-
ings are updated, maintained, or used for output. Each stripe has a
fixed identity mapped onto a unique activation pattern, which enables
address-based routing without copying actual content. This architec-
ture enables flexible reuse of values for roles and supports systematic
generalization to new combinations that are not encountered during
training. It also illustrates how indirection, an operation commonly
used in computer science, might be realized in biological circuits.

While the PFC-BG model emphasizes dynamic routing and gat-
ing at the systems level, the following paper [22] explores how neu-
ral circuits might perform variable binding through associations at
the level of spiking neurons. It models sparse neuron assemblies in
the brain, which form dynamically in “neural spaces” and serve as
pointers to concept assemblies located in a separate “content space”.
These assembly pointers form through fast Spike-Timing Dependent
Plasticity (STDP), triggered by transient disinhibition. This mech-
anism supports symbolic-like operations such as binding, copying,
and equality checking, all implemented without explicit symbolic
representations.

In contrast to pointer models, the next approach [13] introduces a
mechanism that supports symbolic binding through memory segmen-
tation within a unified autoassociative network. It proposes Dynam-
ically Partitionable Autoassociative Neural Networks (DPAANNs)
as a biologically plausible architecture for solving the variable bind-
ing problem. DPAANNS integrate a central attractor-based memory
system with dynamically segmentable buffers that represent sym-
bolic roles. These buffers can be quickly bound to values by activat-
ing distinct subpopulations within the shared autoassociative space.
The model supports role-value independence, allows compositional
encoding and decoding, and enables variable manipulation through
buffer-specific addressing, all using standard neural dynamics. Un-
like anatomical or synchrony-based binding approaches, DPAANNs
offer flexible, content-addressable binding without hardwiring or os-
cillatory control. The model draws on insights from symbolic cogni-
tive architectures (e.g., ACT-R [1]), but remains grounded in biolog-
ically plausible assumptions about connectivity, attractor dynamics,
and Hebbian plasticity.

While both indirection and pointer-based models emphasize spa-
tial representation, the final paper [31] addresses a fundamen-
tally different axis of computation: time. It explores how dynamic,
oscillation-based synchronization can solve the binding problem
with minimal structural overhead. It proposes that variable binding

in working memory can be implemented through time-based syn-
chronization, where each role-value pair is encoded by neural ac-
tivity aligned to a distinct oscillatory phase. This temporal encod-
ing enables multiple bindings to coexist without interference and al-
lows rapid binding and unbinding. The model links memory capac-
ity to oscillatory frequency. Slower oscillations permit more distinct
bindings, while faster ones reduce capacity. Unlike synaptic bind-
ing, this method avoids persistent connections and supports flexible
reuse. Simulations demonstrate how phase separation can maintain
multiple bindings concurrently and explain capacity constraints in
working memory.

Together, these models illustrate a diverse set of mechanisms
(vector-based addition, indirection, assembly pointers, attractor-
based partitioning, and oscillatory phases) through which variable
binding can be achieved. They may offer complementary strategies
for improving generalization, memory efficiency, and compositional
reasoning in future intelligent systems.

Discussion

The papers reviewed in this section address a core challenge at
the intersection of neural networks and symbolic reasoning, i.e., how
to represent and manipulate information such as role-filler bindings
or variable-value associations, within distributed, trainable systems.
The shared objective is to discover mechanisms that allow neural
models to maintain the identity of variables across operations, dy-
namically assign roles, and carry out functions like copying, com-
parison, indirection, and substitution.

A central insight in these works is that variable binding need
not rely on discrete symbols or fixed architecture. Instead, it can
emerge from learned dynamics over continuous representations. Sev-
eral models achieve this by introducing neural forms of indirection,
where patterns of activity act as pointers to other representations.
These pointers can be created, reused, and recomposed dynamically,
which enables systematic generalization and flexible memory access.
Other approaches use oscillatory or time-based mechanisms to en-
code multiple bindings in parallel, which allows variable-role pairs
to be represented and disentangled based on temporal phase. Still
others rely on attractor-based partitioning or topologically organized
buffers that support role-specific storage and recombination.

From the perspective of LLMs, these insights suggest possible di-
rections for architectural and training innovations. For instance, the
addition of explicit binding subspaces, similar to learned role vectors
or binding identities, could improve the handling of coreference, sub-
stitution, and memory-intensive tasks. Indirection and pointer-based
mechanisms could allow models to learn internal memory protocols
that support variable reuse in different contexts, while time-based
activation patterns could facilitate dynamic binding and unbinding
without overwriting content. Such additions could enhance the abil-
ity to learn and apply reusable abstractions, improve interpretability,
and support systematic generalization.

3 Compositionality

To see how modern neural models could acquire and generalize com-
positional structures, we begin this section with some evidence that
standard networks may develop modular internal subroutines spon-
taneously, and then trace a path through increasingly explicit archi-
tectural and learning designs that aim to support systematic gener-
alization [24]. The authors define a notion of compositionality and
apply model pruning techniques with continuous sparsification to
isolate subnetworks responsible for individual subfunctions. These



include tasks such as detecting spatial relations in vision or subject-
verb agreement in language. They find that, across architectures and
domains, subnetworks often encode distinct, functionally specialized
components. These subnetworks can be ablated to selectively dis-
rupt one function without impairing others, which offers evidence for
modular task decomposition. Self-supervised pretraining increases
the clarity and consistency of this modular organization, especially
in language models. The study suggests that gradient-based learn-
ing alone can produce compositional representations under the right
conditions.

The next study [21] directly optimizes for compositional behavior.
It shows how training procedures, rather than architectures alone,
can induce systematic generalization. Meta-Learning for Composi-
tionality (MLC) is a method that trains a standard Transformer to
acquire human-like compositional generalization. This is based on
a large number of short training episodes that involve learning a
small artificial language of invented words. In each episode, a few
examples of input-output word pairs are presented where, e.g., “dax”
refers to a red circle and “fep” means to repeat the previous word
three times. Afterwards, the model is required to generate outputs
for new combinations that were not present during training. Through
meta-learning, the Transformer becomes proficient at inferring latent
grammars from limited data and applying learned rules to new com-
binations. The resulting model exhibits both flexibility and system-
aticity, outperforms standard neural networks, and matches human
generalization patterns. It also replicates human-like errors, which
reveals similar inductive biases. This result shows that compositional
reasoning can emerge in standard architectures when training explic-
itly promotes the development of compositionality.

While MLC encourages systematicity through task distribution,
the next approach [15] focuses on architectural inductive bias. It aims
to make compositional reasoning an explicit part of the internal op-
erations of the network. For this purpose, it proposes the Memory,
Attention, and Composition (MAC) network, a fully differentiable
architecture for visual reasoning. Each MAC cell maintains separate
control and memory states to represent the current reasoning goal
and the intermediate result. The model answers questions by divid-
ing them into a sequence of discrete steps, where each cell selects a
relevant part of the question, retrieves information from the image,
and updates memory accordingly. The architecture uses soft atten-
tion and gated updates to support flexible yet interpretable reasoning
over both language and vision. This design imposes a prior that en-
forces stepwise reasoning. Thus, the network achieves high accuracy
and interpretability on the CLEVR benchmark [16] without explicit
supervision.

Unlike MAC, which implements compositionality by means of
architectural constraints, the following work [4] uses a hybrid NS
design. It introduces the Neural-Symbolic Stack Machine (NeSS),
which combines a symbolic stack machine with a neural controller.
The symbolic component supports recursive operations such as
“push”, “pop”, and “reduce”, while the neural network learns to
produce execution traces without trace-level supervision. The model
generalizes well on multiple benchmarks, including SCAN [20] and
few-shot language tasks, and achieves perfect generalization. A key
innovation is the notion of operational equivalence, which enables
the model to infer compositional categories by grouping functionally
similar expressions. This integration of symbolic components with
neural learning shows that deep networks can acquire abstract, rule-
like behavior when given the appropriate inductive tools and execu-
tion model.

Finally, paper [29] introduces the Relation Network (RN), a mod-

ule designed to perform relational reasoning by explicitly computing
pairwise relations among entities. An RN computes a function over
all object pairs and aggregates these outputs to support downstream
inference. RNs excel in visual and text-based tasks that require the
understanding of inter-object relationships, such as comparing ob-
ject attributes or predicting physical interactions. They outperform
standard neural architectures on relational tasks, particularly on the
CLEVR dataset, and do so without relying on symbolic inputs or
supervision. By enforcing a relational inductive bias at the module
level, RNs provide a plug-and-play mechanism for embedding rea-
soning within otherwise generic networks.

Discussion

These papers show that compositionality can emerge in neural sys-
tems through architectural constraints, meta-learning regimes, or task
designs that implicitly favor modularity. The surveyed approaches
differ in their methods, benefits, and unresolved issues. One line of
work uses sparsification to isolate subnetworks linked to specific sub-
functions such as counting or comparison. These components remain
functional under ablation, which shows that modular computation
can emerge without explicit supervision. However, this discovery
happens after training, while an important question is how to encour-
age persistent functional separation during learning. Meta-learning
methods like MLC expose a Transformer to short synthetic episodes
that require rule abstraction and reuse. This setup enables strong gen-
eralization and is also able to replicate human error patterns. Still, the
approach depends on many generated tasks and grammars, which
limits its scalability. Applying similar ideas to real-world data re-
mains an open issue. Architectural designs such as the MAC model
use stepwise attention and memory operations controlled by sepa-
rate units. These models generalize well on visual tasks and produce
interpretable intermediate results, but their sequential nature may re-
duce efficiency on long text inputs. Hybrid systems such as NeSS
combine neural networks with recursive symbolic operations. They
generalize on tasks like SCAN and program induction but rely on
curriculum learning and predefined operations. Relation Networks
introduce relational modules that compare object pairs. They per-
form well on relational tasks but do not address recursion or variable
binding.

For LLMs, these insights imply that generalization and rule ap-
plication may not require discrete symbolic modules. Instead, such
capabilities could emerge more reliably if LLMs were trained un-
der regimes that induce abstraction, for example, using episodic
meta-learning, architectural modularity, or targeted pruning tech-
niques. They also suggest that interventions at the representation
level, e.g., to isolate functional subspaces or inject compositional
operators, could enhance interpretability and robustness, particularly
for multi-step reasoning tasks. These results challenge the assump-
tion that Transformers are inherently non-compositional and offer
mechanisms to steer their internal dynamics toward more generaliz-
able computation.

4 Contextual Inference and Embedding
Techniques

Understanding how neural systems represent context requires mod-
els that combine representation learning with memory and inference.
This section reviews biologically inspired approaches that address
these challenges through various embedding techniques, contextual
inference frameworks, and representational models that support ab-
straction and relational reasoning. We begin with models that gener-



ate efficient embeddings from sparse neural codes, and move toward
those that organize memory and support flexible navigation in se-
mantic and conceptual spaces.

A biologically inspired model for word embeddings based on the
architecture of the mushroom body of the fruit fly is presented in
[25]. This network uses sparse, competitive dynamics to transform
word-context pairs into binary codes, with global inhibition based
on a k-winners-take-all (kWTA) mechanism. Learning is driven by
exposure to high-frequency word-context pairs and modulated by
word rarity, which enables the system to capture semantic similar-
ity and context-sensitive word senses. These sparse embeddings, i.e.,
the FlyVec model, support tasks such as word-sense disambiguation
and document classification, with high computational efficiency.

Building on this foundation, some follow-up studies refine the ap-
proach and extend its applicability. One of them [32] introduces a
continual learning rule that updates only synapses from the top ac-
tive units to the target class output, leaving all others frozen. This
sparsity fixes the number of synapses updated per example and lim-
its interference. Another work [10] extends the model from words to
full sentences, i.e., the Comply method, by encoding word positions
as complex phases and learning a single complex-valued parameter
matrix. A KWTA stage then produces compact, interpretable binary
sentence embeddings that preserve both semantics and word order.

While the fly-inspired models capture context through local cod-
ing, the COIN framework [14] introduces an approach grounded
in Bayesian inference. It posits that the brain maintains multiple
latent context representations that guide memory creation, expres-
sion, and updating. Contexts are inferred probabilistically from sen-
sory cues, feedback, and time, rather than through direct observa-
tion. The model accounts for classical conditioning, episodic recall,
decision making, and motor learning. It also distinguishes between
proper learning, which involves memory updates, and apparent learn-
ing, which consists of adjustments to context beliefs. By treating
context as a latent variable, the COIN model tries to explain how
symbolic-like behavior can arise from probabilistic inference over
hidden states.

Neuroscience research suggests that the hippocampus sup-
ports context-dependent representation and reasoning by organizing
knowledge into structured internal spaces. Mechanisms such as cog-
nitive maps (representations of relationships between states or con-
cepts), successor representations (encodings of expected future state
occupancy), and grid cells (neurons that exhibit periodic spatial fir-
ing patterns and help to pinpoint the current location) offer models
for constructing embeddings and inference procedures.

Although originally studied for spatial navigation, these mecha-
nisms also appear to support conceptual reasoning. Empirical evi-
dence that the brain reuses spatial navigation mechanisms for ab-
stract reasoning is provided in [5]. Human participants who had to
learn a conceptual space defined by visual features of bird images
exhibited grid-like activation patterns in the entorhinal cortex, anal-
ogous to those observed during physical navigation. This supports
the idea that the brain encodes conceptual relationships using spatial
structure, and suggests a shared computational substrate for spatial
and non-spatial inference.

A successor representation (SR) is introduced in [34], where each
state is encoded by the expected future occupancy of other states
under a policy. This predictive model separates transition dynam-
ics from goals and supports efficient updates to value functions.
While originally applied to spatial navigation, SRs also provide a
general framework for organizing relational knowledge; this idea is
applied to semantic memory in [35]. A neural network encodes an-

imal species using handcrafted features and learns a cognitive map
based on expected feature-based similarity transitions. Varying the
SR discount factor produces coarse or fine conceptual groupings,
e.g., insects vs. mammals, and the model interpolates between known
animals to classify new or incomplete inputs. This supports the use
of predictive relational maps for abstract conceptual knowledge in
order to generalize beyond training data.

A model that allows standard 2D grid cells to encode high-
dimensional variables is proposed in [17]. The system uses random
linear projections to embed high-dimensional inputs into periodic
activity patterns across multiple grid modules. This mixed modular
code enables linear decoding of positions in abstract vector spaces
and supports multiple variable types without modifying the network
architecture. It resolves the dimensionality bottleneck in grid codes
by preserving pairwise relations and scaling to arbitrarily many di-
mensions.

The authors of [28] suggest that both spatial and conceptual repre-
sentations arise in fact from a general clustering mechanism, where
grid-like patterns in navigation tasks emerge from uniform sampling,
while conceptual clusters reflect semantic similarity.

Discussion

These papers highlight how context-sensitive embeddings that
support abstraction, generalization, and memory in neural systems
can emerge from predictive, probabilistic, or geometric codes. An
important idea is that the brain infers latent contexts to determine
when to store, retrieve, or update information. This allows it to handle
discontinuities in experience without overwriting past knowledge, a
property essential for continual learning. SRs and grid-like codes
provide compact embeddings that encode relations and support flex-
ible planning and classification, even in conceptual domains.

These principles can also suggest some ways to extend LLMs. A
model that infers latent context could decide which information to
retrieve or update based on changes in input or task. Spatial coding
schemes, such as SRs or grid-based encodings, could replace fixed
position embeddings and organize concepts based on relational pat-
terns. This may help models to recognize analogies or reuse knowl-
edge across tasks. Sparse and competitive embedding mechanisms
could increase memory efficiency and allow the representation of
multiple meanings of a word or concept, depending on context. These
models propose biologically grounded strategies for encoding infor-
mation in ways that support robust reasoning and generalization for
different tasks, challenges that remain essential to scaling and ex-
tending LLM capabilities.

5 Neuro-Symbolic and Hybrid Systems

This section presents some developments that bridge neural learn-
ing with symbolic or algorithmic methods. We begin with models
that couple neural controllers with differentiable memory, then ex-
plore systems that integrate symbolic reasoning more explicitly, and
close the section with architectures inspired by biological memory
systems.

The Differentiable Neural Computer (DNC) [12] offers an influ-
ential example of neuro-symbolic integration. Building on the ear-
lier Neural Turing Machine (NTM) model [11], DNC augments a
recurrent neural network with a differentiable external memory ma-
trix. This setup allows the model to perform operations that resem-
ble reading and writing variables in traditional computing. The DNC
controller learns to access memory through soft attention mecha-
nisms that include content-based retrieval, temporal linking (storing



the order of writes in a temporal link matrix), and usage-based allo-
cation (tracking memory usage to guide writes to unused locations).
These mechanisms give the model the ability to construct and manip-
ulate data structures such as lists, trees, and graphs. As a result, the
DNC can handle tasks like pathfinding, graph inference, or array sort-
ing. Moreover, it can generalize for variable-length inputs and can
perform operations that resemble classical procedural logic within a
fully differentiable framework. Unlike classic neural networks that
entangle memory with computation, the DNC separates memory and
control, which enables behavior that resembles algorithmic process-
ing.

While the DNC emphasizes a general purpose external memory,
the Neuro-Symbolic Concept Learner [27] introduces a modular de-
sign and symbolic reasoning into visual question answering. The
model decomposes the learning process into three components: a vi-
sual perception module that extracts object-level features, a semantic
parser that translates natural language questions into symbolic pro-
grams, and a program executor that interprets these programs on the
scene. All modules are jointly trained from image—question—answer
tuples, and do not require annotated object labels. Visual attributes
are modeled as neural operators that map object embeddings into
interpretable concept spaces (e.g., shape, color), while symbolic pro-
grams capture compositional logic through executable sequences.
This architecture enables generalization to new object configurations,
new visual domains, and longer queries.

The previous models embed symbolic control directly within the
architecture. The next approach focuses on teaching neural net-
works to imitate the stepwise behavior of classical algorithms. In the
Neural Algorithmic Reasoning framework [39], neural networks are
trained to emulate traditional algorithms, such as Dijkstra’s shortest
path and value iteration. The learning process proceeds in stages. A
neural processor first learns algorithmic steps by training on low-
dimensional abstract inputs. Then, encoder and decoder networks
transform real-world inputs into and out of the latent space of the pro-
cessor. This separation allows the model to preserve algorithmic in-
variants while adapting to noisy, high-dimensional data. It addresses
the algorithmic bottleneck, i.e., the problem of compressing complex
real-world inputs into low-dimensional representations required by
traditional algorithms. This proves to be especially powerful in rein-
forcement learning tasks, where latent planning through algorithmic
modules improves performance in complex or partially observed en-
vironments.

The Hint-ReLIC method [2] improves the generalization of neu-
ral algorithmic models by incorporating causal regularization. The
authors notice that many different inputs can lead to identical in-
termediate computations in algorithms. Based on this, they pro-
pose a self-supervised contrastive learning objective that encourages
graph neural networks to produce similar internal representations for
such inputs. Using a causal graph to formalize this invariance, the
model generates augmented examples that preserve execution trajec-
tories, and enforce stepwise consistency for different variants. This
improves out-of-distribution performance on algorithmic reasoning
benchmarks such as CLRS-30 [38], particularly for sorting and graph
tasks.

The Shared Dual Memory Transformer (SDMTR) [44] modi-
fies the standard Transformer architecture by replacing self-attention
with a memory-based system inspired by the brain. The model in-
troduces two shared memory components: a workspace that acts like
working memory, and a long-term memory (LTM) that stores useful
information across layers. At each layer, input tokens (that act as in-
dependent modules, in fact, units) compete to write to the workspace

using sparse attention. Only the most relevant tokens are allowed to
update the workspace. The workspace is then broadcast back to all
tokens to guide further processing. Important workspace content is
stored in LTM using outer product attention, which allows the model
to build high-capacity memory representations. During inference, the
model retrieves relevant information from LTM to guide token up-
dates. This design supports iterative reasoning and helps the model
to generalize better on relational tasks. SDMTR is reported to out-
perform standard Transformers on benchmarks such as bAbI [40],
Sort-of-CLEVR [30], and the “triangle detection” visual reasoning
task [36].

Discussion

Neuro-symbolic and hybrid models approach reasoning with dif-
ferent strengths and limitations. The Differentiable Neural Com-
puter augments a learned controller with an external memory that
supports content-based lookup, temporal linking, and dynamic al-
location. It enables scalable memory use and variable-like access,
and performs well on synthetic question-answering and graph tasks.
However, training is computationally expensive, attention cost in-
creases with memory size, and stability with very large memories re-
mains unresolved. Hint-ReLIC improves neural algorithmic reason-
ing by aligning hidden states across identical intermediate steps in
an algorithm. It enforces invariance when different inputs imply the
same next step, which boosts out-of-distribution accuracy on CLRS
benchmarks. However, the approach depends on access to algorithm
trajectories or manually generated hints, which may limit its applica-
bility to real-world data. The Neuro-Symbolic Concept Learner com-
bines object detection, parsing, and a symbolic program executor,
and achieves high accuracy on CLEVR using natural supervision.
Yet, it relies on curriculum learning and clean object masks, which
makes transfer to cluttered or ambiguous scenes an open problem.
The Shared Dual-Memory Transformer introduces a competition-
based workspace and a long-term memory. It reports good results on
reasoning benchmarks and enables memory visualization. Still, it can
have high computation costs and lacks evaluation on long language
tasks or noisy inputs.

For Transformer-based LLMs, these ideas provide a blueprint for
enhancing compositional generalization, especially in domains that
require logic, recursion, or algorithmic manipulation. Incorporating
symbolic intermediates, such as learned execution traces or memory
read-write patterns, can make reasoning processes more interpretable
and modular. Hybrid systems also offer a way to disentangle content
(e.g., object or entity representations) from operations (e.g., com-
parison or traversal), which reduces the burden on attention mecha-
nisms to simulate algorithmic flow. These models may suggest that
carefully constrained hybridization and not just greater scale may be
necessary, or at least helpful, to achieve robust reasoning in LLMs.

6 Neuroscience-Inspired Architectures

This section presents some models that use inspiration from the hip-
pocampus, prefrontal cortex, and broader cortical dynamics to build
architectures capable of generalization, composition, and memory
manipulation that can support forms of reasoning relevant to Al
The Tolman-Eichenbaum Machine (TEM) [41] provides a unified
model for how the hippocampus supports both spatial navigation and
relational reasoning. It represents tasks as graph-based transitions
and explains how the hippocampus links relational codes (encoded
by grid-like representations) with sensory content using fast Hebbian
learning. This separation of relational patterns and sensory detail en-



ables the model to generalize across tasks, transfer knowledge to new
environments, and produce consistent remapping patterns. TEM ac-
counts for a wide range of neural responses observed in neuroscience
experiments.

Building on this foundation, the TEM-t model [42] reframes the
components of TEM using a Transformer architecture. The authors
introduce a modified Transformer that uses recurrent positional en-
codings and causal attention. They show that it can reproduce spa-
tial cell types and memory behaviors similar to the hippocampus.
A formal equivalence is proven between Transformer attention and
Hebbian memory retrieval mechanisms, which suggests that brain-
like architectures and modern Transformer models share underly-
ing computational principles. This formulation supports the idea that
Transformer-based systems could benefit from models of hippocam-
pal function and offers a framework for integrating relational mem-
ory with language and abstract reasoning.

While TEM is designed to support generalization through rela-
tional mapping across spatial and task-based contexts, the model in
[19] proposes that hippocampal replay supports compositional gen-
eration. Replay refers to the brain’s reactivation of neural sequences
during rest or planning, often at accelerated timescales. The paper
argues that these sequences do not merely reflect past experiences
but can combine entities and roles, such as “verb” or “start point”,
to build new representations. The authors suggest that replay com-
bines role-bound elements into new configurations, and allows the
system to infer facts that were never explicitly learned. They present
experimental evidence that replay can generate unexperienced se-
quences, support abstract reasoning, and construct compound knowl-
edge. These insights recast replay not only as a memory mechanism
but as a computational resource for relational and symbolic infer-
ence.

Working memory frameworks are extended in [33] by introducing
adaptive chunking as a learned strategy for managing the tradeoff be-
tween memory precision and capacity. It uses reinforcement signals
to decide when to store raw inputs and when to merge similar items
into shared representations, depending on task demands. This chunk-
ing mechanism allows the network to store more information with
fewer resources while accepting a controlled loss in precision. The
model accounts for recency bias, i.e., the improved recall of recent
items, as a consequence of selectively updating or replacing earlier
representations. It also explains differential chunking, where the like-
lihood of merging items increases with their similarity and decreases
with the number of items.

The model in [37] simulates how semantic knowledge can emerge
from word learning grounded in sensory and motor experience. It
uses a spiking neural network with biologically plausible connectiv-
ity and Hebbian learning to associate spoken words with perceptual
and action-based features. These associations produce distributed
neural cell assemblies that integrate phonological, visual, and motor
information without requiring labeled data or external supervision.
Words for objects activate vision-related circuits, while action words
activate motor-related circuits. These category-specific activations
converge in multimodal regions that function as semantic hubs. The
model shows how semantic representations can self-organize from
repeated exposure to co-occurring patterns of sound and sensorimo-
tor input, and it explains both the emergence of modality-specific
word meanings and shared multimodal representations based on the
architecture of the network and learning dynamics.

The Semantic Pointer Architecture (SPA) [6] is a cognitive archi-
tecture that aims to explain how high-level behavior can arise from
low-level neural interactions. The modeling starts with neurons with

tuning curves, where each neuron responds more or less strongly de-
pending on the input values, and uses these responses to encode vec-
tors (similar to the activations of neural populations or cell assem-
blies) and apply transformations [7]. SPA uses these neural building
blocks to create high-level representations called semantic pointers,
i.e., fixed-size vectors that can combine concepts using circular con-
volution, and later recover their parts. This allows a neural system to
represent rules, memories, and sequences in a way that supports rea-
soning and control. The architecture was used to create a computa-
tional model with millions of spiking neurons capable of visual pro-
cessing and action planning, e.g., recognizing digits and remember-
ing lists, counting, answering questions, drawing, and solving psy-
chological tasks like Raven’s matrices [8].

Discussion

These models highlight how biologically inspired mechanisms,
such as information replay, chunking, or multimodal grounding, can
inform the design of neural architectures with enhanced reasoning
capabilities. A recurring theme is the separation of abstract rela-
tional patterns from episodic content, implemented through distinct
coding strategies or dynamic binding operations. This stands in con-
trast to current LLMs, which merge function and content within a
single representation space. Mechanisms like fast Hebbian learning
and adaptive chunking could offer efficient means to encode, up-
date, and reuse relational information without retraining, a feature
that could enable more sample-efficient reasoning in LLMs. Replay-
based models show that sequence generation need not rely on sam-
pling from static representations. Instead, reasoning can emerge from
compositional recombination of role-bound elements, a process more
similar to planning than retrieval. Integrating this with LLMs could
improve zero-shot generalization and support multi-step inference
through internal simulation rather than token prediction alone.

The use of competitive memory systems and task-sensitive gat-
ing illustrates how biological networks manage precision-capacity
tradeoffs. These mechanisms could inspire selective memory rout-
ing in LLMs, which would enable models to preserve important re-
lational patterns while compressing redundant inputs. Likewise, the
emergence of cell assemblies in semantic grounding models shows
how distributed representations can self-organize to reflect shared
abstractions for different modalities. This points to opportunities for
LLMs to learn grounded semantic representations through unsuper-
vised multimodal training.

7 Conclusions

This survey has examined a range of brain-inspired mechanisms
that can offer insights into how symbolic-like reasoning can be im-
plemented within neural systems. While recent advances in LLMs
have brought multi-step reasoning into the mainstream, they have
come at significant computational cost and with limited interpretabil-
ity. In contrast, biological systems perform compositional, context-
sensitive reasoning with remarkable efficiency and generalization ca-
pabilities, which may motivate the continued exploration of neural
principles that could inform artificial architectures.

To summarize the main insights of the survey, Table 1 presents
several biologically inspired ideas drawn from the five categories dis-
cussed above. For each category, it highlights specific mechanisms
that could improve reasoning in neural architectures such as LLMs.
These ideas aim to support capabilities such as variable tracking,
memory control, compositional processing, and relational represen-
tations.



Table 1.

Biologically inspired ideas for improving reasoning in large language models and other neural systems.

Category

Ideas for neural reasoning systems

Variable binding

- A dedicated role subspace in token embeddings could help track the roles of variables and preserve their identity across long
contexts

- Address-based indexing could allow attention to target specific memory locations and reuse intermediate results, like pointers
- Sparse attention could help retrieve information by similarity with fewer activated elements, and more efficiency and inter-
pretability

- Dividing the residual stream into multiple task-specific branches that activate based on context could help hold several role-
value pairs simultaneously without interference

- Fast Hebbian plasticity could form temporary role-value bindings that dissolve after a reasoning step

- Phase-based modulation could help maintain multiple bindings in parallel, separated by timing — or simulated using, e.g.,

learned sinusoidal gates

Compositionality

ments of equality, order, and grouping

- Sparsity penalties or pruning could promote functional modules that remain interpretable and easy to update

- Episodic meta-learning with few-shot tasks could support rule discovery and reuse in different domains

- A (possibly latent) neural stack could support step-by-step composition, recursion, and hierarchical input processing

- Relational attention with pairwise comparisons or edge labels could represent token relationships directly and improve judg-

Contextual  inference
and embedding tech-
niques

- Sparse binary embeddings could reduce memory use while keeping concept meanings distinct

- Embeddings inspired by successor representation could improve next token prediction by modeling likely future states

- Complex-valued position encodings with phase information could unify order and meaning in a single operation

- Position encodings inspired by grid cells could capture conceptual distance more effectively

- Direction vectors in a learned relational map could support movement between related concepts

- Freezing inactive parameters during continual training could preserve existing knowledge while integrating new information

Neuro-symbolic ~ and

hybrid systems reasoning tasks

memory

next reasoning step

- A trainable controller with differentiable external memory could manage storage and retrieval of intermediate results for long
- A shared workspace memory could allow tokens to compete for relevance and promote the most important ones to longer-term
- Generating soft programs or reasoning graphs could break complex queries into clear, step-by-step operations

- Consistency constraints during training could help produce similar internal states for logically equivalent inputs
- Training using contrastive examples with irrelevant input variations could help identify the relevant information that drives the

Neuroscience-inspired

architectures context-aware sense of sequence

reasoning

- A recurrent mechanism that tracks positional change over time could replace fixed encodings and give a more dynamic,
- Letting tokens compete for a small number of write locations at each layer could form stable representations of important ideas
- A chunking mechanism could merge memory items based on similarity and usage to improve memory efficiency

- A replay mechanism could retrieve earlier sequences and replace entities in them to support counterfactual and imaginative

- Multimodal training data could ground language in perception and action, which may improve transfer learning

Looking forward, such strategies could offer promising paths for
advancing neuro-symbolic reasoning. One useful direction could be
to build introspection tools that track internal activations during each
step of a reasoning task. These tools could expose how variable bind-
ings, rule applications, and memory retrievals map onto specific neu-
ral components. This could support better debugging, evaluation, and
transparency. Another useful mechanism could come from biologi-
cal timing patterns. The brain often uses nested oscillations to co-
ordinate the activation of roles and values in sequences. Artificial
models could implement similar timing-based schemes to manage
which variables are active and when, and thus reduce interference
during multi-step reasoning. A third idea could involve sleep-like re-
play. The brain replays key experiences offline to reinforce important
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