
Constraint-Guided PINNs: A Constrained Optimization
Approach

Wout Romboutsa,b,c,*, Quinten Van Baelena,b,c and Peter Karsmakersa,b,c

a KU Leuven, Dept. of Computer Science, Kleinhoefstraat 4, B-2440 Geel, Belgium
bFlanders Make @ KU Leuven

cLeuven.AI - KU Leuven Institute for AI
ORCID (Wout Rombouts): https://orcid.org/0009-0009-9612-3948, ORCID (Quinten Van Baelen):

https://orcid.org/0000-0003-2863-4227, ORCID (Peter Karsmakers): https://orcid.org/0000-0001-8119-6823

Abstract. Physics-Informed Neural Networks (PINNs) have
emerged as a powerful tool for solving Partial Differential Equa-
tions (PDEs) by integrating physical laws into the learning process.
However, PINNs often struggle with training instability and the chal-
lenge of balancing multiple loss terms, which typically requires ex-
tensive hyperparameter tuning. In this paper, we introduce Constraint
Guided Physics-Informed Neural Networks (CGPINNs), a novel ap-
proach that leverages Constraint Guided Gradient Descent (CGGD)
to train PINNs. CGPINNs reframes the learning problem as a con-
strained optimization task, replacing complex hyperparameter bal-
ancing with more intuitive, semantically meaningful parameters. We
also propose to add two sets of constraints derived from the PDE at
the initial and boundary conditions, which prevent the model from
converging to trivial solutions when using CGGD. Our experiments
on a simulated heat diffusion problem demonstrate that CGPINNs of-
fers a more stable and robust training procedure, effectively learning
the underlying physics without the need for expensive hyperparame-
ter searches.

1 Introduction

Neuro-symbolic AI aims to combine deep learning with knowledge-
based systems, bridging the gap between statistical learning and sym-
bolic reasoning. Physics-Informed Neural Networks (PINNs) fall un-
der this paradigm, as they integrate prior knowledge, in the form
of physically inspired differential equations, into the learning pro-
cess. In PINNs, this physical knowledge is encoded through Partial
Differential Equations (PDEs) and is embedded into the neural net-
work training, enforcing physical laws or prior knowledge during the
learning process into the model weights. This enables PINNs to learn
solutions that are consistent not only with observational data but also
with the governing physics of the problem.

PDEs play a fundamental role in modeling a wide range of physi-
cal phenomena across science and engineering, including fields like
fluid dynamics, heat transfer and others [4, 5]. Traditional numeri-
cal methods, such as the finite element method, have long been the
standard for solving PDEs /citeBaccouch2021. While these methods
are robust and well-established, they often face challenges when ex-
tended to high-dimensional problems and can suffer from high com-

∗ Corresponding Author. Email: wout.rombouts@kuleuven.be

putational cost and very slow inference [8]. In contrast, PINNs repre-
sent a novel approach to solving PDEs by leveraging the expressive
power and fast inference of deep neural networks [13].

Despite their potential, they are not without limitations. It is gen-
erally known that PINNs can be hard to train. A common challenge
is the balancing of different loss components, such as the data-fitting
term and the PDE residual term, which often requires careful and
costly hyperparameter tuning, as an imbalance in these terms can
lead to slow convergence or a failure to learn a good solution [1].

To address these challenges, we introduce Constraint Guided
Physics-Informed Neural Networks (CGPINNs), which reformulates
the training of PINNs as a constrained optimization problem. To
solve this, we propose a novel training methodology based on Con-
straint Guided Gradient Descent (CGGD) [19]. CGGD is a learn-
ing framework that enables the training of deep learning models by
minimizing an objective function while explicitly satisfying a set of
constraints, including those involving continuous variables. This ap-
proach allows constraints to be enforced directly during training,
thereby eliminating the need to manually tune weighting hyperpa-
rameters for balancing multiple loss terms.

This article is organised as follows. In Section 2, we discuss re-
lated work on addressing PINN training difficulties, including adap-
tive weighting strategies and architectural modifications. Section 3
details our methodology, starting with an introduction to the CGGD
algorithm, followed by the new CGPINN method, its learning objec-
tive and the inclusion of initial and boundary condition constraints.
Section 4 outlines heat diffusion experiments, covering the setup
and physical configurations, data generation, evaluation metrics, net-
work architecture, and the training process. Section 5 presents and
discusses the results, comparing CGPINN’s performance against a
vanilla PINN baseline. Finally, section 6 provides the conclusion and
outlines future work.

2 Related work

The challenge of effectively training PINNs is widely recognized
in the scientific machine learning community [14, 10, 7]. One of
the core difficulties originates from the multi-objective nature of the
standard training process, which relies on minimizing a composite
loss function. This loss typically combines a data-fitting term with a
physics-based residual term that enforces a PDE. These different ob-



jectives often result in a difficult training process, as the correspond-
ing loss terms can have vastly different scales and gradient magni-
tudes. This “gradient pathology” [20] can cause the optimization pro-
cess to be dominated by one objective, leading to slow convergence
or a failure to find a physically meaningful solution.

Much of the existing research on multi-objective optimization,
though not specific to PINNs, has focused on addressing this issue
through adaptive weighting strategies [3]. These methods aim to dy-
namically adjust the relative importance of each loss component dur-
ing training, in an effort to achieve a more balanced and effective op-
timization process. Examples include approaches such as GradNorm
[6] that adjust weights based on the norm of the gradients of each loss
term, attempting to ensure that all objectives contribute meaningfully
to the weight updates. Other techniques, such as Learning Rate An-
nealing (LRA) [20], assign different learning rates to different parts
of the loss function and anneal them over time. While often effec-
tive, these methods can introduce new hyperparameters that require
careful, and often expensive, tuning.

Another line of research has explored architectural modifications
to improve PINN performance. Some studies have demonstrated that
using specialized architectures or adaptive elements can enhance the
network’s ability to approximate complex solutions [2, 20]. Others
have incorporated techniques like Fourier feature mappings [17] to
help the network learn high-frequency components that are com-
mon in physical phenomena but are notoriously difficult for standard
MLPs to capture. While beneficial, these architectural changes do
not fundamentally alter the underlying training challenge of balanc-
ing competing loss objectives.

Our work takes a different path by reframing the PINN training
problem from a multi-objective optimization task to a constrained
optimization task. Instead of balancing competing objectives, we
treat the physical laws as constraints that the solution must satisfy.

3 Methodology
At the core of our proposed methodology for training CGPINNs lies
the CGGD algorithm [19]. We begin with a brief introduction to
CGGD before detailing the CGPINN framework.

3.1 Constraint Guided Gradient Descent (CGGD)

CGGD is an optimization framework that enhances traditional gra-
dient descent by incorporating hard inequality constraints into the
training process. Unlike conventional approaches that rely solely on
minimizing data-driven or multi-objective loss functions, CGGD in-
troduces a mechanism to enforce a set of constraints throughout the
training.

At each iteration, the method checks whether the current predic-
tion is feasible, i.e., whether it belongs to the set of predictions that
can be obtained from models satisfying all constraints on the training
set. We refer to this set as the Feasible Region (FR). If the constraints
are satisfied, the update proceeds as in standard gradient descent, op-
timizing the loss without modification. Consider at training iteration
j the update of a set of model weights Wj during training. When
constraints are violated, the update is guided not only by the gradi-
ent of the loss function but also by a corrective direction dirC that
steers the model towards the FR. Before combining these vectors, the
constraint direction is matched to the gradient loss. The constraint di-
rection is then scaled by a factor greater than 1 to ensure it dominates
the update step. By default, this rescale factor is set to 1.5, although
any value greater than 1 is sufficient. This approach guarantees that

the updated model moves closer to the FR [19]. An illustration of
this process for a two-weight update is shown in Fig. 1, where the
loss gradient and constraint direction are shown in red and blue, re-
spectively.

FR
Feasible Region

𝑑𝑖𝑟𝐶(𝑧𝑗)𝑊𝑗

𝑊𝑗+1

𝑊𝑗+2
𝑊𝑗+3

𝑊𝑗+4

Figure 1. Graphical representation of CGGD update step. The red vector
represents the loss-driven component of the update step, i.e., the standard
loss gradient. The blue vector represents the constraint-driven component,

pointing toward the FR and rescaled to have a norm 1.5 times that of the red
vector. The red circle, with radius equal to the loss gradient norm, illustrates

all possible update positions after the step.

3.2 CGPINNs

PINNs offer a framework for incorporating physical laws, expressed
as differential equations, directly into the training of neural networks.
The vanilla training objective of a PINN [13] is defined by

argmin
W

α · L (Φ (xobs,W ) ,yobs) + (1− α) · PDE (Φ (x,W )) ,

where the loss function L measures the difference, typically by con-
sidering the Mean Squared Error (MSE), of the observations yobs

corresponding to the observed inputs xobs with the predictions of
the neural network Φ with learnable weights W , PDE measures
how well the differential equation is obeyed by the neural network
Φ for (typically) both the observations and the unobserved colloca-
tion samples, in this work named x. The smaller its value, the better
it is obeyed. To balance both terms properly, a hyperparameter α is
present which needs tuning as indicated before. Note that the PDE
can also be an ordinary differential equation. This methodology is
visualized in Fig. 2.

Instead of relying on the manually tuned weighting parameter α,
CGPINNs recasts the training objective as a constrained optimization
problem, where the governing PDE is enforced directly through ex-
plicit constraints. The new training objective of CGPINN is therefore
defined as

argmin
W

L (Φ (xobs,W ) ,yobs)

s.t. PDE (Φ (x,W )) ≤ ε,

where the constraint tolerance ε specifies the allowable deviation
of the neural network’s predictions from the governing PDE. In this



𝒙

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜱(𝒙,𝑾)

𝜕𝜱

𝜕𝒙

𝜕𝜱2

𝜕𝒙2

𝑃𝐷𝐸

Neural Network AD

argmin
𝑾

𝛼 ∙ 𝐿(𝜱 𝒙𝑜𝑏𝑠,𝑾 , 𝒚𝑜𝑏𝑠) + (1 − 𝛼) ∙ 𝑃𝐷𝐸(𝜱(𝒙,𝑾))

Training Objective

Figure 2. Visual of vanilla PINN network architecture. A network Φ with
weights W predicts outputs Φ(x,W ) from the inputs x. AD is used to
calculate gradients required to compute the PDE residual. The learning

objective is to minimize the weighted sum of the loss L and PDE residuals,
with the weighting controlled by a parameter α.

work, we initialize ε at a relatively large value (0.1), corresponding
to a high FR, and progressively reduce it during training using an
exponential decay schedule (εt+1 = 0.9 · εt). This decay process
continues until the constraints can no longer be fulfilled. The final
value of ε, together with the fraction of constraints satisfied, charac-
terizes how well the model adheres to the governing physical equa-
tions. In this way, ε attains a meaningful interpretation as part of a
joint measure of the model’s physical consistency.

Giving more weight to
To avoid converging to a trivial solution, where all derivatives

computed via AD are zero, we introduce two additional sets of con-
straints that address special cases of the governing PDE. To illus-
trate these constraints, we consider the example of diffusion in a one-
dimensional rod with Dirichlet boundary conditions, as presented in
[15]. While this example is used for clarity, the proposed technique is
general and not limited to any specific type of PDE. For the diffusion
case under consideration, the governing PDE is given by

∂

∂t
u(x, t) = κ

∂2

∂x2
u(x, t), (1)

where κ is the thermal diffusivity coefficient. For the Dirichlet
boundary conditions, the Initial Conditions (ICs) and the Boundary
Conditions (BCs) are given by

IC : u(x, 0) = sin
(π

L
x
)
, for x ∈ [0, L] , (2)

BC : u(0, t) = u(L, t) = 0, for t ∈ [0, T ] . (3)

The first additional set of constraints is obtained by substituting
the function in (2) into the right-hand side of (1). This yields

∂

∂t
u(x, 0) = κ

−π2

L2
sin

(π

L
x
)
, for t = 0, x ∈ [0, L] . (4)

In other words, by combining the spatial partial derivatives of the
initial conditions with the governing PDE, we derive an additional
constraint. If the spatial derivatives are zero, this constraint will be
violated. Consequently, the FR will exclude models that produce zero

spatial derivatives, effectively preventing such trivial solutions. This
set of constraints will be referred to from now on as ICCon.

Similarly, the second set of constraints is obtained by substituting
the function in (3) into the left-hand side of (1). This yields

0 = κ
∂2

∂x2
u(x, t), for x ∈ {0, L} , t ∈ [0, T ] . (5)

As with the PDE constraint, a slack variable defined by ε, is intro-
duced that will allow some tolerance on the constraint. To summa-
rize, the optimization objective of CGPINNs is defined by

argmin
W

L (Φ (xobs,W ) ,yobs) (6)

s.t. PDE (Φ (x,W )) ≤ ε,

ICCon (Φ (xobs,W )) ≤ ε,

BCCon (Φ (xobs,W )) ≤ ε.

This constrained optimization problem can be solved directly by
using CGGD [19]. In this work, the loss function L is defined as
the MSE between the boundary samples and its ground truth values.
The function PDE (Φ (x,W )) internally uses the required deriva-
tives of the network output with respect to the input variables, com-
puted using AD. The resulting residual quantifies how well the
PDE is satisfied at the sampled collocation points x. The direction
dirC of the constraints is computed by calculating the derivative of
PDE (Φ (x,W )). To ensure balanced influence, this direction vector
is scaled to have the same norm as the corresponding loss gradient,
an approach analogous to the multi-head factor scaling used in [18].
A similar procedure is applied to the remaining constraint terms.

4 Experiments

To validate our method and compare it against a vanilla PINN, we
implement a heat diffusion experiment based on [15]. The setup mod-
els one-dimensional heat diffusion in a rod of length L, capturing the
temperature distribution u(x, t) over time t. The governing physical
process is described by the following PDE:

∂u(x, t)

∂t
= κ

∂2u(x, t)

∂x2

Following [15], we explore several configurations of the rod length
L and thermal diffusivity coefficient κ. Specifically, we investigate
the parameter pairs (L, κ) ∈ {(5, 0.04), (5, 1), (1, 1), (1, 25)}.
These configurations cover a broad range of physical regimes, from
slow to fast diffusion with varying rod length L. To enable meaning-
ful comparisons across these settings, each simulation is run over a
time horizon defined by the diffusive time scale τ = L2

κ
. This char-

acteristic time scale allows us to normalize the simulation duration
relative to the physical properties of each setup and ensure that the
dynamics are compared over equivalent stages of diffusion.

The analytical solution of the PDE is

u(x, t) = sin
(π

L
x
)
· e−

π2

τ
t,

and is used to generate the training, validation, and test sets.
For the initial condition, spatial points are randomly sampled from

the domain, where u(x, 0) = sin
(
π
L
x
)
. Boundary values are sam-

pled along the temporal domain at the Dirichlet boundaries x = 0
and x = L, with fixed temperatures u(0, t) = u(L, t) = 0. To



enforce the PDE, collocation points are sampled within the spa-
tiotemporal domain using Latin Hypercube Sampling (LHS) [11].
Fig. 3 provides a visual representation of the domain and the sam-
pled points.

The training dataset consists of 128 initial and 128 boundary con-
dition samples along with 1024 sampled collocation points. The val-
idation and test datasets consists of 1024 collocation samples each.
While the training and validation sets are re-sampled at each iteration
to improve generalization, the test set is randomly sampled once to
evaluate the model’s final performance.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Collocation samples

Boundary condition samples

Initial condition samples

0

0.2

0.4

0.6

0.8

1

u

t

x

Figure 3. Representation of simulation data. Boundary samples indicated
with crosses and collocation samples with dots. Background presents the

ground truth solution of the heat diffusion PDE.

4.1 Evaluation metric

The primary performance indicator for all models is the test loss,
computed as the mean squared (prediction) error (MSE) on an unseen
test set of 1024 points sampled with LHS from the spatio-temporal
domain. The test loss reflects how well the model generalizes to un-
seen data and provides a direct measure of predictive accuracy. It is
chosen as the main metric because it quantifies the discrepancy be-
tween the learned solution and the true analytical solution in a data-
driven and interpretable way.

4.2 Network architecture

A standard Multilayer Perceptron (MLP) model is used for the ex-
periments. The network architecture consists of 4 hidden layers, each
comprising 50 neurons. The hyperbolic tangent activation function is
applied in all hidden layers, a common choice in both the PINN and
regression literature due to its smoothness and its capacity to support
higher-order derivatives, which are crucial for accurately modeling
and solving PDEs.

The network is designed to approximate the solution u(x, t) of
the PDE. It takes a two-dimensional input vector, consisting of the
spatial coordinate x and the temporal coordinate t, and produces a
single scalar output representing the predicted temperature u.

The network’s forward pass is augmented to not only compute
the output u, but also to leverage AD to calculate with it the par-
tial derivatives that are required to enforce the PDE, namely ∂u

∂x
, ∂u

∂t
,

and ∂2u
∂x2 . These derivatives are used to compute the PDE and bound-

ary residuals, which are needed to enforce the physical constraints

during training. Furthermore, to improve training stability, the input
coordinates (x, t) are scaled to a normalized range before being pro-
cessed by the network. The derivatives are calculated with respect
to the original non-normalized input coordinates so that gradients
and constraints can be formulated in the original physical or domain-
specific units, and the PDE captures the relation between the original
physical quantities.

4.3 Training process

To ensure reproducibility, pseudo-random seeds are set for Python’s
built-in random module, as well as NumPy and PyTorch. Determinis-
tic behavior is also enabled where applicable. A base seed, provided
via the configuration or script arguments, serves as the foundation
from which individual seeds are derived for each component that
requires one. This is to ensure that independence between random
number generators is maintained, avoiding unintended correlations
while preserving reproducibility across runs.

We use the ADAM optimizer [9] in combination with an exponen-
tial learning rate scheduler, following a similar setup used in [15].
The initial learning rate is set to 10−3 and decays exponentially
by a factor of 0.9. If no improvement occurs within 1000 consec-
utive epochs, the learning rate is reduced according to the predefined
schedule.

The constraint tolerance parameter ε defines the allowable error
for considering a constraint as satisfied. It is initially set to 1 and is
progressively reduced when a Constraint Satisfaction Rate (CSR) of
95% is achieved. This dynamic adjustment enables automatic tun-
ing of the tolerance for each experiment and helps prevent the use
of overly strict tolerances, which could otherwise degrade the perfor-
mance of CGGD. Whenever the tolerance is dynamically reduced,
the learning rate is reset to the original value to allow the model to
restart learning from a better initialization.

The training objective depends on the executed experiment. For
the vanilla PINN, the objective is a direct minimization of the loss,
which is a weighted sum of MSEs of the boundary data and the col-
location data based on hyperparameter α:

argmin
W

α · 1

N

N∑
i=1

(xobs,i −Φ (xobs,i,W ))2 +

(1− α) · 1

M

M∑
j=1

(PDE (Φ (xj ,W )))2
(7)

For our CGPINNs method, the objective is determined by CGGD
and is to satisfy the constraints while simultaneously minimizing the
data loss:

argmin
W

1

N

N∑
i=1

(xobs,i −Φ (xobs,i,W ))2

s.t.


PDE (Φ (x,W )) ≤ ε,

ICCon (Φ (x,W )) ≤ ε,

BCCon (Φ (x,W )) ≤ ε.

(8)

To facilitate the practical application of the CGGD algorithm, we
rely on our custom-developed Python package Congrads [16]. This
package encapsulates the specialized logic required to define learn-
ing objectives that include constraints. In particular, it provides a
flexible and user-friendly interface for specifying constraints on se-
lected parts of the neural network, and includes integrated check-
pointing and logging mechanisms. By abstracting away the low-level



implementation details, Congrads enables researchers and practition-
ers to focus on modeling and experimentation, making constraint-
guided training accessible and efficient in practice.

Metrics were accumulated each epoch and averaged over 10-epoch
intervals for logging and plot generation. Checkpointing and other
scheduling functionalities, however, continued to rely on per-epoch
metrics directly.

4.4 Implementation details

The experiments are implemented in Python using PyTorch [12]. In
the experiments, gradients are computed using PyTorch’s AD func-
tionality. Although it is not strictly necessary to calculate them in
this way, AD provides a straightforward and reliable method, simpli-
fying the implementation of gradient-based procedures and reducing
the potential for manual errors in derivative calculations. This ap-
proach allows for efficient experimentation without compromising
flexibility, as alternative gradient computation methods could also be
employed if desired.

In PyTorch, gradients can only be computed with respect to leaf
tensors. Consequently, it is not possible to compute the gradient
of the constraints directly with respect to the model output, since
output tensors are typically non-leaf nodes in the computational
graph. To address this, we create a leaf tensor filled with ones, of
shape [batch_size, 1], with gradient tracking enabled. This tensor is
element-wise multiplied with the output to produce a new tensor for
which gradients of the constraints can be computed. The resulting
gradient can then be transformed back to the gradient with respect to
the original output by dividing by the output values.

5 Results & Discussion
We compare the performance of our CGPINN approach against a
standard vanilla PINN across four different physical configurations,
varying the rod length L and thermal diffusivity κ. For the vanilla
PINN, we report the test set MSE loss for five different values of
the weighting hyperparameter α to showcase its sensitivity. For CG-
PINN, no such hyperparameter is needed and experiments were re-
peated over 3 different random seeds. In this case, we report the mean
and standard deviation of the test set MSE loss.

5.1 Baseline Performance

The results in Table 2 highlight the sensitivity of the vanilla PINN
to the choice of the hyperparameter α. For each physical configura-
tion, the performance varies significantly across different α values.
For instance, in the (L = 5, κ = 0.04) case, the Test MSE changes
by an order of magnitude depending on α. The optimal value of α
is inconsistent across different configurations; α = 0.5 is best for
(L = 1, κ = 1), but it performs poorly for the high-diffusivity case
(L = 1, κ = 25). This demonstrates that finding the right balance re-
quires a costly, problem-specific hyperparameter search. In the chal-
lenging high-diffusivity scenario, the vanilla PINN fails to converge
to a good solution for any tested α, with MSE values several orders
of magnitude higher than in other cases.

5.2 CGPINN Performance

The CGPINN framework demonstrates robust and stable perfor-
mance without the need for manual loss weighting. As shown in the
final column of Table 2, CGPINN achieves a relatively low MSE

across all configurations. Most notably, in the two more challeng-
ing setups, (L = 5, κ = 0.04) and (L = 1, κ = 25), CGPINN
significantly outperforms the best vanilla PINN configuration. In the
high-diffusivity case where κ = 25, where the baseline failed, CG-
PINN successfully converges to an accurate solution with a test MSE
of 7.53×10−9. This good performance and stability can be attributed
to two factors. First, by treating physics as explicit constraints, CG-
PINN avoids the delicate balancing act of multiple loss terms. Sec-
ond, the inclusion of the ‘ICCon‘ and ‘BCCon‘ constraints helps
guide the model away from trivial or physically inconsistent solu-
tions, and may offer advantages in more challenging configurations.
While for many of the configurations the vanilla PINN with a care-
fully tuned α achieves a lower mean error, CGPINN remains compet-
itive while offering a much easier and more reliable training process.

Additionally, Table 1 presents the final constraint tolerances
achieved by our CGPINN method across various experimental con-
figurations. For each setting of L and κ, the reported value of ε indi-
cates the tolerance within which 95% of the test samples satisfy all
imposed constraints. This demonstrates the method’s ability to con-
sistently enforce constraints across different parameter regimes.

Table 1. Final achieved constraint tolerances ε of our CGPINN method for
different experimental parameters. The values indicate that 95% of samples

had all constraints satisfied with the tolerance ε.

Parameters CGPINN
L κ ε

5 0.04 1.01× 10−5

5 1 1.34× 10−4

1 1 3.17× 10−3

1 25 1.78× 10−1

6 Conclusion & Future work

In this paper, the framework CGPINNs is introduced for training
PINNs using constrained optimization. By leveraging CGGD, the
proposed approach eases the need for delicate and costly hyperpa-
rameter tuning associated with balancing multiple loss terms in tradi-
tional PINNs. Two novel sets of constraints are proposed, ICCon and
BCCon, which are derived from the governing PDE at the domain
boundaries that prevent the model from learning trivial solutions.

The experiments on a 1D heat diffusion problem demonstrate that
CGPINN provides a more stable and robust training procedure. It
achieves good performance, and in challenging cases superior to, a
well-tuned vanilla PINN, without requiring any sensitive weighting
hyperparameters. This makes the process of developing and training
PINNs simpler and more reliable.

One possible direction for future work is to apply CGPINN to
more complex, multi-dimensional PDEs. Another line of follow-up
research is the comparison of CGPINN to existing state-of-the-art
techniques like [20, 6] and further investigate the interplay between
constraint tolerance scheduling and learning rate scheduling to fur-
ther improve convergence speed and solution accuracy.

Acknowledgements

This research was supported by the DTF-PINN SBO project of Flan-
ders Make, the strategic research centre for the manufacturing indus-
try of Flanders, Belgium. This research received funding from the
Flemish Government (AI Research Program).



Table 2. Test losses of baseline compared with CGPINN for different experimental parameters. For the baseline (vanilla PINN), results are shown for five
different hyperparameter configurations to demonstrate sensitivity. CGPINN results are shown as a single representative value per configuration.

Parameters Vanilla PINN CGPINN
L κ α = 0.10 α = 0.25 α = 0.5 α = 0.75 α = 0.90

5 0.04 2.77× 10−7 2.95× 10−7 5.72× 10−6 2.13× 10−5 2.28× 10−4 4.80× 10−8

5 1 1.62× 10−9 3.68× 10−10 3.10× 10−10 1.79× 10−9 1.10× 10−8 2.36× 10−8

1 1 3.67× 10−7 2.78× 10−7 1.94× 10−7 1.98× 10−9 1.11× 10−9 3.00× 10−8

1 25 1.44× 10−2 1.49× 10−2 1.95× 10−4 6.18× 10−5 1.66× 10−5 7.53× 10−9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

Prediction Prediction

Ground Truth Vanilla PINN CGPINN

True solution Difference Difference

Figure 4. Visualization of predictions and differences to the ground truth for experiment with L = 1 and κ = 1. The left panel shows the analytical solution
of the PDE; the center panel displays the vanilla PINN prediction (small) with hyperparameter α = 0.5 and the corresponding difference from the analytical

solution (large); the right panel presents the same results for our CGPINN method.

References
[1] S. Basir. Investigating and mitigating failure modes in physics-informed

neural networks (pinns). 2022. doi: 10.48550/ARXIV.2209.09988.
URL https://arxiv.org/abs/2209.09988.

[2] H. Bi and T. D. Abhayapala. Point neuron learning: a new physics-
informed neural network architecture. EURASIP Journal on Audio,
Speech, and Music Processing, 2024(1), Nov. 2024. ISSN 1687-
4722. doi: 10.1186/s13636-024-00376-0. URL http://dx.doi.org/10.
1186/s13636-024-00376-0.

[3] R. Bischof and M. A. Kraus. Multi-objective loss balancing for physics-
informed deep learning. Computer Methods in Applied Mechanics and
Engineering, 439:117914, May 2025. ISSN 0045-7825. doi: 10.1016/j.
cma.2025.117914. URL http://dx.doi.org/10.1016/j.cma.2025.117914.

[4] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: a review. Acta
Mechanica Sinica, 37(12):1727–1738, Dec. 2021. ISSN 1614-3116.
doi: 10.1007/s10409-021-01148-1. URL http://dx.doi.org/10.1007/
s10409-021-01148-1.

[5] S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis. Physics-
informed neural networks for heat transfer problems. Journal of Heat
Transfer, 143(6), Apr. 2021. ISSN 1528-8943. doi: 10.1115/1.4050542.
URL http://dx.doi.org/10.1115/1.4050542.

[6] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich. Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks. 2017. doi: 10.48550/ARXIV.1711.02257. URL https://arxiv.
org/abs/1711.02257.

[7] A. Farea, O. Yli-Harja, and F. Emmert-Streib. Understanding physics-
informed neural networks: Techniques, applications, trends, and chal-
lenges. AI, 5(3):1534–1557, Aug. 2024. ISSN 2673-2688. doi:
10.3390/ai5030074. URL http://dx.doi.org/10.3390/ai5030074.

[8] T. G. Grossmann, U. J. Komorowska, J. Latz, and C.-B. Schönlieb.
Can physics-informed neural networks beat the finite element method?,
2023. URL https://arxiv.org/abs/2302.04107.

[9] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization,
2014. URL https://arxiv.org/abs/1412.6980.

[10] A. S. Krishnapriyan, A. Gholami, S. Zhe, R. M. Kirby, and M. W.
Mahoney. Characterizing possible failure modes in physics-informed

neural networks. 2021. doi: 10.48550/ARXIV.2109.01050. URL
https://arxiv.org/abs/2109.01050.

[11] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of
three methods for selecting values of input variables in the analysis of
output from a computer code. Technometrics, 21(2):239, May 1979.
ISSN 0040-1706. doi: 10.2307/1268522. URL http://dx.doi.org/10.
2307/1268522.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc., 2019.

[13] M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential equations. Jour-
nal of Computational Physics, 378:686–707, Feb. 2019. ISSN 0021-
9991. doi: 10.1016/j.jcp.2018.10.045. URL http://dx.doi.org/10.1016/
j.jcp.2018.10.045.

[14] P. Rathore, W. Lei, Z. Frangella, L. Lu, and M. Udell. Challenges in
training pinns: A loss landscape perspective, 2024. URL https://arxiv.
org/abs/2402.01868.

[15] F. M. Rohrhofer, S. Posch, C. Gößnitzer, and B. C. Geiger. Data
vs. physics: The apparent pareto front of physics-informed neural net-
works. IEEE Access, 11:86252–86261, 2023.

[16] W. Rombouts, Q. Van Baelen, and P. Karsmakers. Ml-
kuleuven/congrads: Incorporate constraints into neural network
training for more reliable and robust models., Feb 2025. URL
https://github.com/ML-KULeuven/congrads.

[17] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Ragha-
van, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng. Fourier fea-
tures let networks learn high frequency functions in low dimensional
domains, 2020. URL https://arxiv.org/abs/2006.10739.

[18] Y. Tefera, Q. Van Baelen, M. Meire, S. Luca, and P. Karsmak-
ers. Constraint-guided learning of data-driven health indicator mod-
els: An application on the pronostia bearing dataset. arXiv preprint
arXiv:2503.09113, 2025.

[19] Q. Van Baelen and P. Karsmakers. Constraint guided gradient descent:



Training with inequality constraints with applications in regression and
semantic segmentation. Neurocomputing, 556:126636, 2023.

[20] S. Wang, Y. Teng, and P. Perdikaris. Understanding and mitigating
gradient flow pathologies in physics-informed neural networks. SIAM
Journal on Scientific Computing, 43(5):A3055–A3081, Jan. 2021. ISSN
1095-7197. doi: 10.1137/20m1318043. URL http://dx.doi.org/10.1137/
20M1318043.


