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Abstract
This survey examines the role of neurosymbolic AI (NeSy) in enhancing the explainability of graph neural networks (GNNs). By
combining neural and symbolic approaches, NeSy methods aim to mitigate the black-box nature of GNNs and provide transparent
and interpretable decision making. We categorise explainability techniques, including rule learning, subgraph based methods, and
knowledge graph integration, and evaluate their applications in domains such as biomedicine and fraud detection. The survey also
compares instance level and model level explanation methods, highlighting their respective strengths and limitations. Finally, we
discuss open challenges and future directions for advancing NeSy in GNN explainability.
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1. Introduction
NeSy is a promising approach that combines neural net-
works, which excel in learning complex patterns from data,
with symbolic reasoning, which provides interpretability
and representation of structured knowledge [1, 2]. This
combination addresses significant issues that purely neural
systems face, such as the lack of interpretability and the
scalability challenges encountered by traditional Rule-based
AI [3]. Two important research areas within NeSy are rule
learning, which involves extracting logical rules from data
or trained neural networks, and explainability in GNNs,
which aims to understand the predictions made by graph
based deep learning systems [4, 5].
The early pre-2020 GNN used gradient-based methods [1, 3],
which were limited by relational networks and symbolic
methods, and were computationally intensive. 2020-2025,
neurosymbolic approaches emerged, integrating neural and
symbolic paradigms. GNNExplainer [6], a keymethod in the
realm of explainable AI (XAI), introduced subgraph-based
explanations for GNNs. In addition to this, INSIDE-GNN
[7] focused on mining activation rules, while Logic-Guided
GNNs [8] integrated knowledge graph (KG) rules. These ap-
proaches mark a significant evolution in Rule-based explain-
ability techniques for GNNs. They combine subgraph extrac-
tion with symbolic rule induction to improve model trans-
parency. Rule learning techniques, such as differentiable
inductive logic programming (ILP) [9] and neural-symbolic
knowledge distillation [1], allow AI systems to generate
logical rules while leveraging gradient based learning meth-
ods. These approaches are critical in domains where trans-
parency is essential, such as healthcare and legal decision-
making. GNNs have become very effective for working with
relational and graph-based data, but their complexity makes
it challenging to explain their decisions clearly. Explainabil-
ity methods, such as GNNExplainer [6] and PGExplainer
[10], identify significant subgraphs and node features to help
users understand GNN decisions. However, most recent ap-
proaches rely heavily on soft masks, making explanations
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potentially less stable and less reliable. In addition, their
explanations typically focus on individual predictions rather
than on proving the overall predictions of the model. NeSy
has emerged as a promising approach, integrating neural
networks with symbolic reasoning to combine the power of
data-driven models with human understandable logic.
Recent work has sought to overcome these limitations.
Methods that extract symbolic rules from hidden layers
of GNNs offer more precise and more reliable explanations
[11, 12, 7]. Approaches such as semantic graphs for layer-
wise analysis and logic-guided enhance GNN interpretabil-
ity by integrating symbolic rules into neural predictions.
These hybrid methods are central to our survey and high-
light the role of Rule-based reasoning in GNN explainability.
However, key challenges remain, namely improving scal-
ability, ensuring fidelity of explanations, and developing
standardised evaluation metrics.
This survey focusses on recent advances in GNN explain-
ability, human readable rule learning, and exploring their
integration within NeSy. Instead of broadly categorising
hybrid architectures, we focus onmethods that effectively in-
tegrate neural and symbolic techniques within GNNs to en-
hance their transparency, trustworthiness, and interpretabil-
ity. This paper aims to bridge the gap between symbolic
reasoning and GNN explainability, with a focus on human-
interpretable rule extraction and integration of symbolic
knowledge.
Although existing surveys have made valuable contribu-
tions to the explainability of GNN [5, 13] and NeSy [14, 15]
in isolation, they exhibit three critical gaps, which this work
uniquely bridges in both domains, systematically analysing
how rule learning enhances GNN transparency while main-
taining predictive performance. Previous surveys treat GNN
explainability and symbolic rule learning as separate do-
mains [5] focus purely on GNN methods, [14] on symbolic
reasoning. To our knowledge, this is the first survey to
systematically examine the integration of symbolic rule
learning with GNN explainability within a unified NeSy
framework. Unlike previous work, we incorporate recent
advancements such as differentiable rule mining [9] and
temporal graph explainers [16], which are key to improving
the explainability and scalability of GNN models. While
[17] surveys graph explainability broadly and [18] exam-
ines healthcare applications, we uniquely bridge technical
mechanisms, integration frameworks, and domain applica-
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Table 1
Comparison of our survey with existing survey papers

Survey Paper GNN Explainability Rule-based- NeSy Survey Focus Key Techniques

AComprehensive Survey onGNNs
[5]

3 7 Taxonomy of GNN Ex-
plainability, Methods

GNNExplainer, PGExplainer,
GraphMask

A Comprehensive Survey on Trust-
worthy Graph Neural Networks:
Privacy, Robustness, Fairness, and
Explainability [13]

3 7 Trustworthiness in GNNs:
Privacy, Robustness, Fair-
ness, and Explainability

Trustworthy GNNs, Privacy-
Preserving, Robustness, Fair-
ness

NeSy for Reasoning Over Knowl-
edge Graphs: A Survey [14]

7 3 NeSy and Reasoning over
Knowledge Graphs

Rule Learning, Embedding Ap-
proaches, Logical Constraints

Graph-Based Explainable AI: A
Comprehensive Survey [17]

3 7 Graph Explainability
Methods Beyond GNNs

Graph-Based Learning Mod-
els, Knowledge Graphs, GNN
Models

Neurosymbolic AI: Explainability,
Challenges, and Future Trends
[15]

7 3 Classification of Explain-
ability in NeSy

Implicit/Explicit Representa-
tions, Unified Representations

A Survey of Neurosymbolic Visual
Reasoning with Scene Graphs and
Common Sense Knowledge [19]

7 3 Knowledge-Based Neu-
rosymbolic Approaches
for Scene Representation

Scene Graph Generation,
Visual Reasoning, Common
Sense Knowledge Integration

A Study on Neurosymbolic Artifi-
cial Intelligence: Healthcare Per-
spectives [18]

7 3 Neurosymbolic AI in
Healthcare Applications

Rule-based Explainability,
Knowledge Representation,
Machine Learning

NeurosymbolicMethods for Ex-
plainable Graph Neural Net-
works: A Survey

3 3 Rule Learning and
GNN Explainability in
NeSy

Symbolic Reasoning, GNN
Explainability

tions with a consistent emphasis on human-interpretable
rule extraction. As in Table 1, this chapter highlights the
gap in the discussion of the interplay between the learning
of neurosymbolic rules and the explainability of GNN.
Table 3 compares the scope of our survey with previous

works in key dimensions. Whereas existing surveys tend
to focus on isolated aspects of either GNN explainability
or symbolic AI, our work provides a unified perspective
that bridges these domains and addresses emerging needs
in explainability. Comparison of explainability methods by
scope (Instance-Level, Model-Level, Rule-based, Concept-
Based) narrows down the focus to surveys that discuss key
explainability methods in GNNs and NeSy, with particular
attention to evaluation protocols and method categorisa-
tion. This survey employs a systematic literature review
(SLR) methodology with the objective of comprehensively
identifying, selecting, and synthesising all relevant research
related to the application of NeSy techniques for explaining
GNNs. The process encompassing identification, screening,
eligibility, and inclusion is detailed in the following and sum-
marised in Figure 1. This analysis highlights three critical
gaps that our survey addresses. As discussed in Section 2,
current methods in instance-level and model-level GNN ex-
plainability are reviewed. Specifically: (1) the integration of
low-level GNN explanations with high-level rule learning
covered in Sections 3–4, the exploration of temporal and
dynamic graph scenarios, which are essential for captur-
ing evolving relationships in graphs and are discussed in
Section 3 and Section 5 the provision of practical guidance,
validated through domain case studies in Section 6. Tempo-
ral graph scenarios benefit significantly from symbolic rule
learning, a feature often overlooked by traditional GNN ex-
plainability methods. This survey identifies key gaps across
these three dimensions and proposes directions for future

research to address them. 
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Figure 1: PRISMA Flow Diagram illustrating the study selection
process.

2. GNN Explainability Methods
Understanding and interpreting GNN decisions has become
a critical challenge, as these models achieve state-of-the-
art results on tasks based on non-Euclidean data, such as
node classification and graph classification. Unlike images



or text where gradient based visualisation heuristics are
widely used, the discrete, relational nature of graphs means
that applying such approaches can disrupt key structural
properties and produce misleading explanations [5]. To ad-
dress these shortcomings, researchers have developed four
complementary families of explainability methods; instance-
level, model-level, Rule-based (intrinsic or post-hoc), and
concept-based. These methods collectively aim to identify
influential components (nodes, edges, or features), extract
significant substructures, and present them in a human read-
able form [20]. NeSy combines GNNs with symbolic reason-
ing to enhance model explainability; By integrating GNN
explainability methods with symbolic rule learning, NeSy
provides logical, human readable explanations while aiming
to preserve predictive performance. Graph relations and
subgraph motifs align naturally with symbolic rule precon-
ditions, motivating a NeSy focus for GNN explainability.
Figure 2 illustrates the taxonomy of GNN explainability,
which categorises methods into two main types: factual and
counterfactual explanations. Factual explanations identify
key features that significantly influence model predictions,
using techniques such as gradient based methods and sub-
graph extraction. In contrast, counterfactual explanations
focus on determining the minimal changes to the input
graph that would alter the prediction of the model, helping
to pinpoint characteristics whose modification can lead to a
different outcome. This taxonomy addresses the challenges
of improving GNN transparency through Rule-based rea-
soning in NeSy. Unlike broader explainability taxonomies,
it specifically explores the intersection of NeSy and GNN
XAI, offering a framework that combines symbolic reason-
ing to enhance interpretability and identify research gaps.
While methods like GNNExplainer focus on instance-level
explanations, Logic-Guided GNNs take a distinct approach
by incorporating external knowledge, such as knowledge
graphs. In addition, we explore hybrid methods that com-
bine elements from different approaches to further enhance
explainability.

2.1. Instance-Level Explanation Methods
Table 2 categorises the representative GNN explainability
methods according to their scope: instance (local), hybrid
(both), and model (global). It also highlights how each
method supports key aspects such as classification saliency,
knowledge extraction, and graph generation, providing a
clearer understanding of their respective contributions to
GNN transparency. Post hoc instance-level methods explain
individual predictions without altering the trained GNN’s
parameters. Gradient-based techniques, such as Guided
Backpropagation and CAM/ Grad-CAM, assign saliency
scores to nodes, edges, or features, but often produce noisy
and unstable explanations [21, 22]. Perturbation-based
methods, notably GNNExplainer [6] and GraphMask [23],
optimise discrete masks on graph elements to maximise
fidelity and sparsity. The surrogate model approaches of
PGExplainer [10] and GraphLime [24] fit interpretable mod-
els to local graph neighbourhoods. These instance-level
methods provide detailed insights crucial for personalised
applications such as medical diagnosis and fraud detection,
although they can be computationally demanding and may
lack generalisation across diverse inputs.

2.2. Model-Level Explanation Methods
Model-level explanations provide information on the overall
decision logic of GNNs across an entire dataset, offering a
high-level view of the model’s behaviour. Techniques like
XGNN [25] synthesise prototype graphs that help reveal
class-specific structural motifs and trigger high-confidence
predictions, contributing to a clearer understanding of the
output of GNN. Another significant method, activation rule
mining, extracts symbolic rules from hidden layer activa-
tions, generating global logic style summaries of the model
decision-making process [26]. These symbolic rules play
a crucial role in making the model’s behaviour more in-
terpretable, providing an additional layer of explanation
compared to traditional GNN explainers. However, while
these global insights support the verification against domain
knowledge and enhance trust, they often rely on a small,
representative set of graphs, which may miss rare but cru-
cial decision pathways [27]. By focussing on symbolic rule
extraction, our survey highlights how incorporating Rule-
based reasoning into model-level explainability can capture
more nuanced decision patterns and improve the compre-
hensiveness of GNN explanations. Figure 2 introduces a
distinction between factual and counterfactual explanations,
which are critical for understanding how different methods
explain the predictions of GNN. While the categories in the
figure focus on the nature of explanations, factual vs. coun-
terfactual, the rest of the paper categorises methods by their
scope, such as instance-level, model-level, and Rule-based
methods. Hybrid methods combine intrinsic explainability
with symbolic reasoning, such as rule extraction, to provide
both transparent decision-making and logical reasoning.
Table 2 provides an overview of various GNN explain-

ability methods, highlighting their approach, focus, and
whether they incorporate Rule-based reasoning. These
methods are evaluated on the basis of whether they incor-
porate rule-based reasoning, which is a crucial aspect of
enhancing the transparency and interpretability of mod-
els. Rule-based reasoning helps in extracting human read-
able explanations, enabling users to better understand the
model’s decision-making process and ensuring that predic-
tions align with domain specific knowledge. Some methods,
particularly those related to concept-based explanations,
also include elements of graph generation to provide global-
level insights into the model’s behaviour. Graph generation
techniques are often employed in concept-based methods
to provide a global-level understanding of GNN behaviour.
Knowledge extraction refers to methods that aim to ex-
tract explicit knowledge from trained GNN models. These
methods are closely related to rule-based and concept-based
techniques, as they extract human readable explanations
that can be validated by domain experts.

2.3. Neurosymbolic Explanation Methods
for GNN XAI

Neurosymbolic approaches to GNN explainability introduce
symbolic structure into the explanation pipeline and, where
possible, extract human readable artefacts that experts can
inspect. Together, these methods form a single area within
NeSy for GNN XAI. Rule-based methods analyse trained
models to derive symbolic if–then rules that summarise de-
cision logic. Examples include RelEx [33], which extracts
relational clauses frommodel behaviour, GLGExplainer [35],
which induces global logical formulas over learnt concepts,



GNN Explainability 

Factual

Self-Interpretable Post-hoc

Information Constraint
Structural Constraint

Decomposition
Perturbation
Gradient Based
Surrogate

Instance Level  Model Level

Generation
Rule Based

Search Based Neural Network Based Perturbation Based

Counterfactual

Figure 2: Overview of the taxonomy of GNN explainability methods [10]

Table 2
Comparison of GNN explainability methods by scope and supported functionalities. Type (scope): Instance-level (local,
per-node/sample), Model-level (global), or Hybrid (supports both). Classification: the method natively explains predictive
tasks (e.g., node/graph classification) by attributing importance to features/subgraphs (3= supported; 7= not applicable/not
primary). Knowledge extraction: explicit symbolic artefacts (e.g., rules, Boolean formulas, constraints). Graph generation:
synthesises exemplar/prototype graphs or subgraphs (beyond masking or extraction). Abbreviations (e.g., SA, CAM, LRP)
follow the original papers; ticks indicate capability, not comparative quality.

Method Type Classification Knowledge Extraction Graph Generation

SA [22] Instance 3 7 7
Guided BP [21] Instance 3 7 7
CAM [22] Instance 3 7 7
Grad-CAM [22] Instance 3 7 7
GNNExplainer [6] Instance 3 7 7
PGExplainer [10] Instance 3 7 7
GraphMask [23] Instance 3 7 7
ZORRO [28] Instance 3 7 7
Causal Scr. [29] Instance 3 7 7
SubgraphX [30] Instance 3 7 7
LRP [31] Instance 3 7 7
Excitation BP [22] Instance 3 7 7
GNN-LRP [32] Instance 3 7 7
GraphLime [24] Instance 3 7 7
RelEx [33] Instance 3 3 7
PGM-Explainer [34] Instance 3 7 7
INSIDE-GNN [7] Hybrid 3 7 7
FSAM [26] Model 3 7 3
Logic-Guided [8] Hybrid 3 3 7
GLGExplainer [35] Model 3 3 7
GraphTrail [36] Model 3 3 7
XGNN [25] Model 3 7 3

and GraphTrail [36], which derives model level rule traces
for global understanding. Rule quality is commonly assessed
by fidelity, that is, agreement with the underlying GNN, and
by interpretability, captured through expert judgement or
rule complexity [37]. Although such methods often pro-
vide clearer insight than purely neural attributions, they
face scalability challenges and frequently require pruning
or visualisation to manage complexity [38]. Concept-based
methods link predictions to human defined or automatically
discovered concepts rather than raw features. Graph con-
cept bottleneck models [20] predict intermediate concepts,
such as functional groups in molecules, before the final clas-
sification, allowing concept-level debugging. Graph CAV

[27] adapts concept activation vectors to graphs, identi-
fying subgraph patterns whose presence or absence most
influences decisions. Grounding explanations in domain
concepts facilitates expert validation and can support down-
stream rule learning. Other NeSy variants include knowl-
edge graph integration and logical regularizers that inject
constraints during training; activation-level mining and dis-
tillation, where frequent activation patterns are translated
into compact clauses; and diagnostic mapping of internal
representations, such as FSAM [26], which maps semantic
structure across layers and can inform subsequent symbolic
extraction. Intrinsic masking frameworks, such as INSIDE-
GNN [7], also improve traceability without necessarily pro-



Table 3
Comparative analysis of survey coverage on key neurosymbolic explainability aspects. 3= Full coverage, Partial = Limited
coverage, 7= Not addressed

Survey Focus [5] [14] [13] [15] Our Work

GNN Explainability Methods 3 7 7 7 3
Symbolic Rule Learning 7 3 7 3 3
Neurosymbolic Integration 7 Partial 7 3 3
human readable Rules 7 7 7 Partial 3
Temporal Graphs 7 7 7 7 3
Application Case Studies 7 Partial 7 Partial 3

ducing explicit rules. These variants improve transparency
without relying solely on attribution of local characteristics.

3. Evaluation Metrics for NeSy
Methods in GNN Explainability

To compare and benchmark the diverse families of GNN
explainability and rule learning methods, a unified set of
evaluationmetrics is essential. Thesemetrics are specifically
tailored to evaluate the effectiveness and interpretability of
NeSy methods in the context of GNN explainability. We
summarise below the core evaluation criteria used across
the literature, noting that how each metric specifically suits
the evaluation of explainability in GNN models.
Fidelity: Measures the agreement between an explana-
tion or extracted rule set and the original GNN output. In
instance-level methods, Fidelity is often used as a measure
of classification accuracy of a surrogate model or masked
graph relative to the base GNN [6, 10]. In rule extraction,
Fidelity quantifies the percentage of GNN predictions that
are accurately reproduced by the distilled rules [12].
Sparsity: Quantifies the compactness of an explanation,
such as the number of nodes, edges, or features included in
an instance-level mask or the total count of generated rules.
Sparse explanations are preferred for human comprehen-
sion, but must balance the loss of fidelity [6, 23].
Rule Complexity: Evaluates the interpretability of ex-
tracted logic rules. It includes metrics such as the number
of predicates of average rule length, tree depth, or total rule
count. Lower complexity generally implies easier human
validation [37].
Concept Completeness and Purity: For concept-based
methods, completeness measures how well the discovered
concepts cover the model decision space, while purity as-
sesses the semantic coherence of each concept cluster [27].
High Completeness and Purity indicate that concepts ac-
curately and precisely represent the underlying decision
factors.
Prototype Faithfulness: In prototype graph generation,
this metric measures how representative the graphs gener-
ated are of the target class. It is assessed by the confidence
drop when real inputs are replaced with prototypes in the
GNN inference pipeline [25].
Stability: Reflects the robustness of explanations under
small perturbations of the input graph. Stable methods
produce consistent explanations for similar inputs, an im-
portant property of trustworthy AI [21].
Although these structured metrics provide a foundation for
evaluating NeSy methods in GNN explainability, there is a
significant gap left. Currently, no single benchmark captures
all dimensions of neurosymbolic explainability, such as local

and global fidelity, rule complexity, concept coherence, and
prototype-graph quality, within a unified framework. The
development of such comprehensive evaluation standards
is essential for advancing the effective integration of NeSy
AI into GNN explainability.

4. Taxonomy of Neurosymbolic
Methods

The taxonomy of neurosymbolic methods for GNN explain-
ability classifies approaches by the integration mechanism,
the explanatory objective, and the applicability to graph
types. Integration mechanisms include rule activation min-
ing, rule extraction, knowledge graph integration, and hy-
brid reasoning methods such as Logic Tensor Networks
[7]. Emerging techniques include privacy preservation and
temporal rule induction. Explanatory objectives focus on fi-
delity, robustness, sparsity, and user trust. Applicability cov-
ers homogeneous, heterogeneous, temporal, and attributed
graphs [19]. Temporal graphs model relationships that
evolve over time and pose distinct challenges for explain-
ability. Examples include social networks and disease pro-
gression, where explanations must reflect dynamic change.
Traditional GNN explainers often assume static structure
and, therefore, overlook temporal evolution. In practice,
intrinsic masking and diagnostic tracing, as in INSIDE GNN,
improve transparency in domains such as biomedicine and
fraud detection. Subgraph saliency methods (for example,
GNNExplainer) can serve as a precursor to post hoc rule dis-
tillation, while logic-guided GNNs inject knowledge graph
constraints during training for applications in recommender
systems and biomedicine. Logic Tensor Networks support
relational reasoning with differentiable logical constraints,
and temporal rule mining has been explored for dynamic
graphs in traffic and finance.
Table 4 highlights the mechanisms and neurosymbolic meth-
ods of explainability, providing an overview of the land-
scape and its gaps. This taxonomy focusses exclusively on
approaches that use symbolic or semantic information pro-
duce, consume, or constrain for explanation. Purely neural
attributions (for example, gradient or perturbation scores
without a semantic interface) are treated as baselines and
are not part of the taxonomy. We organise methods by
where and how symbolic knowledge enters the pipeline, and
we keep scope (instance level, model level, or hybrid) and
integration stage (intrinsic or post hoc) as orthogonal tags
used elsewhere in the paper. The aim is to guide NeSy
researchers towards classes that deliver human readable
artefacts (rules, concepts, constraints, or semantically an-
notated prototypes) or inject structured knowledge during
learning. Rule activation mining groups methods that anal-



Table 4
Characterisation of neurosymbolic methods for GNN explainability

Method Cate-
gory

Example Mechanism Metrics Use Cases Graph Types

Rule Activation
Mining

INSIDE-GNN [7] FORSIED activa-
tion mining

Fidelity: High
Sparsity: Moder-
ate

Biomedicine,
Fraud Detection

Homogeneous, At-
tributed

Rule Extraction GNNExplainer[6] +
Distillation [39]

Subgraph saliency
+ clauses

Fidelity: High User
Trust: High

Recommender Sys-
tems, Social Net-
works

Homogeneous, At-
tributed

KG Integration Logic-Guided
GNN [8]

Datalog regulariz-
ers

Fidelity: High Ro-
bustness: Moder-
ate

Biomedicine,
Knowledge
Graphs

Heterogeneous

Hybrid Reasoning Logic Tensor Net-
works [7]

Differentiable con-
straints

Fidelity: High User
Trust: High

Relational Reason-
ing

Heterogeneous

Attention-Based
Rule Selection

RuleFormer-GNN
[40]

Attention-based
rule selection

User Trust: High
Robustness: Mod-
erate

Social Networks Homogeneous,
Temporal

Privacy-Preserving
Extraction

Differential Pri-
vacy Rules [41]

Privacy-
guaranteed
rule mining

Fidelity: Moderate
User Trust: High

Healthcare Attributed

Temporal Rule In-
duction

Temporal Rule
Mining [16]

Rules over evolving
graphs

Robustness: Low
Sparsity: Moder-
ate

Traffic Networks,
Finance

Temporal

yse internal activations to frequent surface patterns that
can be aligned with semantic conditions or forwarded to a
rule learner. These methods improve traceability and can
precede explicit rule induction (for example, INSIDE GNN).
Rule extraction contains post hoc pipelines that distil trained
GNNs into symbolic clauses or rule lists, for example, sub-
graph importance followed by clause induction, or global
rule tracing. Knowledge graph (KG) integration covers in-
trinsic approaches that inject constraints or relations from
a KG into training (for example, logic-guided objectives),
shaping representations in a knowledge-aware way. Hybrid
reasoning includes differentiable logical frameworks that
couple neural encoders with soft constraints for relational
reasoning (for example, Logic Tensor Networks), yielding
predictions that are amenable to symbolic inspection. At-
tention based rule selection captures models that learn to
select or weight candidate rules to form concise, context
aware explanations. Privacy preserving extraction comprises
methods that mine rules under formal privacy guarantees
so that explanations can be shared in sensitive domains.
Temporal rule induction collects methods that learn or apply
rules to evolving graphs, ensuring that explanations remain
coherent over time.
Each branch corresponds to a distinct integration point for
semantics: mining hidden states; extracting rules from be-
haviour; injecting KG constraints during learning; reasoning
with differentiable logic; selecting rules with attention; en-
forcing privacy during extraction; and handling temporal
dynamics with time-aware rules.

5. Neurosymbolic Integration for
GNN Explainability

We consider neurosymbolic integration for GNN explainabil-
ity along the following features: (i) symbolic rule learning
(intrinsic constraints during training or post hoc extraction);
(ii) scope of explanation (instance level, model level, or hy-
brid); (iii) explanatory artefacts (masks or subgraphs, human

readable rules, prototype graphs or generated graphs, and
concepts); (iv) integration stage (intrinsic or post hoc); and
(v) temporal and counterfactual support (the ability to rea-
son over evolving graphs and hypothetical edits). Table 2
situates existing explanations against these features.
Combining symbolic rule learning with GNN explain-

ability fosters neurosymbolic frameworks that retain the
representational power of neural models while offering sym-
bolic transparency [11, 20, 26]. Table 2 shows a clear gap:
no single method currently provides both instance-level and
model- level explanations together with human readable
rule extraction and prototype graph generation. Although
current hybrid approaches perform well on saliency for clas-
sification and on rule derivation, they typically omit graph
synthesis. Incorporating graph generation into Rule-based
explainers therefore, a next step for NeSy. This would not
only produce symbolic rules, but also produce prototype
graphs that present learnt knowledge in a visual and struc-
tured form. Such a combination would support detailed
case-level justifications, by explaining individual predic-
tions, and global symbolic insights, by summarising class-
level patterns. In practice, the choice of features should
align with the target workflow. For safety critical domains,
hybrid explainers that provide transparent case-level rea-
soning together with validated rules for audit are preferable.
For exploratory analysis of class structure, model-level gen-
erators such as XGNN can reveal global patterns, which may
then be formalised as symbolic constraints and fed back into
the training loop. This interplay of saliency, rule induction,
and graph synthesis underpins robust and interpretable neu-
rosymbolic systems.

5.1. Neurosymbolic Methods for GNN
Explainability

The neurosymbolic methods in GNN explainability focus
on how neural and symbolic components can be integrated
to enhance transparency and adaptability. It presents key
integration mechanisms such as rule activation mining, rule



extraction, and knowledge graph integration. Rule activa-
tion mining extracts symbolic rules from GNN activations,
which can be done through single-layer or multilayer min-
ing [37]. Rule extraction involves deriving human read-
able rules from trained GNNs, using subgraph-based or
embedding-based methods. Knowledge graph integration
enriches the GNN explainability by embedding structured
knowledge from KGs, either through KG-guided training or
KG-augmented explanations. Hybrid reasoning combines
neural and symbolic modules to enable bidirectional inter-
action, exemplified by methods like neural-symbolic distilla-
tion and attention-based rule selection. Emerging methods,
such as extraction of privacy-preserving rules and induc-
tion of temporal rules, address new challenges in the field
[26]. Defines explainability goals such as fidelity, robust-
ness, sparsity, and user trust, which are critical to ensuring
that GNNs provide meaningful and reliable explanations.
The authors discuss the adaptability of these methods for
different graph types, including homogeneous, heteroge-
neous, temporal, and attributed graphs. INSIDE-GNN [7]
for rule activation mining and GNNExplainer [6] for rule
extraction, alongside emerging techniques such as differen-
tial privacy in rule extraction, it emphasises the importance
of scalable KG integration, standardised benchmarks for
temporal graphs, and ethical considerations such as bias
mitigation.

5.2. Rule-Guided GNNs
Rule-guided GNNs represent a key advance in the integra-
tion of symbolic reasoning into GNNs by embedding logical
constraints into the learning process, thus improving inter-
pretability, consistency, and accuracy. Logic-guided GNN
[8] employs Datalog-style clauses as soft regularizers, align-
ing predictions with domain rules. Applied to data sets such
as WordNet, it achieved a 5% F1 score improvement, particu-
larly in noisy settings, demonstrating the ability of symbolic
reasoning to mitigate data inconsistencies. RuleFormer-
GNN [5] further advances this approach by using attention
mechanisms to dynamically apply context-relevant rules.
This led to a 40% reduction in rule violations in benchmark
tasks, highlighting its effectiveness in managing complex
graph structures. Ongoing developments combine sym-
bolic rule learning with machine learning strategies, such
as reinforcement learning, to enhance adaptability while
preserving interpretability, paving the way for more robust
and transparent rule-guided GNNs. Symbolic rule learn-
ing bridges the gap between neural networks and human-
understandable logic by extracting interpretable rules from
the learnt representations of the network. In GNNs, which
handle complex graph-structured data, this approach is par-
ticularly valuable, as it provides an explainable layer over
the model’s decision-making. Recent advances in neural
symbolic AI have integrated symbolic rule learning with
GNNs, enabling the generation of human readable rules
while preserving high predictive accuracy.

5.3. Post-hoc Rule Extraction and Iterative
Refinement

Post hoc rule extraction converts GNN trained opaque de-
cisions into explicit, human readable ’if-then’ rules, while
iterative refinement closes the loop by using those rules to
guide further model training. Early pipelines combine the

saliency of the subgraph of GNNExplainer [6] with neural-
symbolic distillation [1] to produce concise rule sets that
justify node or graph predictions in the recommendation
and knowledge graph systems. Functional Semantic Activa-
tion Mapping (FSAM) [26] advances this by tracking neuron
activations across layers and distilling them into natural lan-
guage narratives or logic clauses, revealing both which em-
bedding dimensions drive each class decision and architec-
tural issues such as oversmoothing. Crucially, this becomes
a closed-loop extracted rule serving as soft constraints or
diagnostic feedback during subsequent training, improving
both model accuracy and interpretability. Counterfactual
validation tests rule the necessity, concept bottleneck layers
ground extraction in human-meaningful abstractions, and
advanced pruning heuristics distil large rule spaces into
concise, high-value rule sets. Scaling this iterative process
to large, dynamic graphs will require streaming rule mining
algorithms and sparse GNN architectures, but it promises
fully neurosymbolic systems that learn continuously and
explain transparently.

5.4. Hybrid Architectures
Hybrid neurosymbolic architectures combine neural net-
work pattern recognition with symbolic reasoning to en-
hance the explainability of GNN. These architectures en-
able bidirectional information flow, making GNN output
more interpretable [4]. For example, neural modules learn
graph embeddings, which symbolic modules use to generate
human readable rules. This synergy addresses the ”black
box” nature of GNN, providing accurate and logical expla-
nations. Key methods include logic tensor networks [7]
and neural theorem provers (NTP) [42]. LTNs integrate
logical constraints into neural networks, improving inter-
pretability by enforcing domain knowledge during training,
while NTPs use symbolic deduction to reason over graph
structures. Both methods excel in relational reasoning tasks,
achieving accuracy up to 98%. Other methods like INDIE
GNN and XNNN also improve the quality of explanations by
optimising discrete scores or generating prototype graphs
[17]. Hybrid approaches improve GNN explainability by
combining neural and symbolic reasoning. They improve
factual and counterfactual explanations, addressing limita-
tions in purely neural or symbolic methods. Applications in
biomedicine and fraud detection show their practical bene-
fits, although challenges such as computational complexity
and scalability remain [20].

6. Applications and Future
Directions

In previous sections, we examined the challenges and limi-
tations of GNN explainability and NeSy AI, including issues
related to scalability, rule complexity, and the integration of
symbolic reasoning with neural networks. The neurosym-
bolic integration of rule learning and GNN explainability has
already shown impact in multiple domains. In biomedicine,
hybrid pipelines that combine GNN-derived embeddings
with differentiable rule miners have surfaced interpretable
associations between molecules, genes, and diseases, sup-
porting drug repurposing and personalised therapy design
[14, 11]. For example, in a noisy SARS-CoV-2 interaction
network, a neurosymbolic method rediscovered the rela-
tionship ’hydroxychloroquine inhibits SARS-CoV-2’ with



greater precision 89%, while also providing an explicit rule
that clinicians could inspect and validate [37]. In social
networks and recommender systems, explainable GNNs
extract human readable if–then recommendations—for ex-
ample, “if the user has liked items in category A and belongs
to community C, then recommend product X” improving
both accuracy and user trust [2, 7]. In autonomous driving,
dynamic rule learners encode traffic regulations and safety
constraints as symbolic rules that adapt in real time to new
sensor inputs, enabling safe planning alongside high fidelity
perception [15]. Neural XAI methods for GNNs, such as
gradient based techniques, provide model explanations but
struggle with instability and domain level interpretability.
Symbolic XAI offers transparency, but faces challenges with
scalability and deployment in real time. NeSy combines
Rule-based reasoning with neural methods, offering a more
interpretable and potentially scalable solution. Neverthe-
less, three challenges remain central to real world use: first,
existing rule mining methods struggle to scale to graphs
with millions of nodes and edges; second, many frameworks
depend heavily on domain specific priors or ontologies, lim-
iting applicability to new contexts; and third, there is no
unified standard for evaluating the joint quality of neural
predictions, symbolic rule fidelity, and explanation com-
pleteness. These gaps can be addressed by optimising al-
gorithms to reduce computational complexity, exploring
hierarchical or distributed frameworks for scalability, and
using large language models (LLMs) for improved natural
language translation of rules, thereby enhancing accessibil-
ity for domain experts.
FSAM[26], which maps the semantic structure between
GNN layers, motivates a complementary direction: the auto-
mated evaluation of GNN explanations using neurosymbolic
reasoning. Existing protocols largely rely on fidelity, spar-
sity and stability, but rarely assess whether explanations are
logically consistent, free of redundancy, and semantically
meaningful. A neurosymbolic evaluator could formalise
rules and subgraphs into a symbolic representation and
then check consistency, redundancy, coverage and robust-
ness, thereby complementing fidelity based measures with
logical and semantic assessment.

6.1. Human Readable Knowledge Extraction
Current neurosymbolic methods can produce rules that
mimic model behaviour, but these rules often remain com-
plex or overly numerous. Future work should focus on
learning compact and semantically meaningful rule sets
that align with domain knowledge. For example, a health-
care rule such as “if a patient is older than 60 with heart
disease, the probability of a cardiovascular event is higher”
is clinically interpretable. Reducing the complexity of the
rules improves usability by focussing on valid and relevant
rules. Techniques such as hierarchical rule induction, con-
cept bottleneck modules, and interactive pruning interfaces
will be essential for distilling extensive rule collections into
a smaller, high-value subset that captures the most critical
decision drivers [43, 44, 45].

6.2. Prototype Graph Generation for Global
Explanations

While instance-level explanations highlight local decision
factors and rule-based methods capture symbolic structure,
few approaches generate prototypical graphs that illustrate

class-level behaviour in a visually intuitive form [44]. Ex-
tending model-level explainers, such as XGNN with seman-
tic annotations that bind generated subgraphs to extracted
rules, would enable practitioners to see both the structural
motifs and the logical conditions underlying each class.
Such prototype graphs, annotated with human readable
captions, could serve as useful tools for model validation,
teaching and regulatory compliance. By pursuing these
directions, streamlined human readable rule extraction, an-
notated prototype graph generation, and automated neu-
rosymbolic evaluation systems can deliver not only predic-
tive performance but also transparent, actionable insights
for deployment in critical domains.

7. Conclusion
This survey outlines the integration of the explainability of
NeSy and GNN, addressing both theoretical and practical
challenges. Our analysis of Table 2 reveals a critical gap:
no existing approach simultaneously delivers local saliency,
global summaries, human readable rule sets, and prototype
graph generation. We propose three directions for advanc-
ing NeSy-based GNN explainability: (1) distilled rule ex-
traction to produce compact, domain-specific logic; (2) dual
mode explainers that provide both local and global insight
by integrating annotated prototype graphs with symbolic
conditions; and (3) unified evaluation benchmarks that as-
sess fidelity, interpretability, and scalability. Pursuing these
directions will enable neurosymbolic GNNs to match state-
of-the-art performance on graph structured tasks while also
providing transparent, actionable insight. A unified evalua-
tion framework is needed for GNN explainability that com-
bines fidelity analysis with assessment of human readable
rule extraction and usefulness. We anticipate that models
capable of generating prototype graph outputs linked to con-
cise rules will accelerate adoption in regulated domains such
as healthcare, finance, and autonomous systems by offering
case level transparency and global rule audits. Establishing
comprehensive benchmarks and human in the loop valida-
tion protocols will be essential to ensure these systems are
robust and trustworthy in real world deployments.
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