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Figure 1. 1D Transformer pipeline with Logic Tensor Networks enforcing
per-sample label consistency and dynamic similarity constraints.

Abstract. The early detection and classification of mechanical
faults in rotating machinery is essential for predictive maintenance.
We propose a novel neuro symbolic framework that integrates a one-
dimensional Transformer encoder with Logic Tensor Networks and
a dynamic rule generation module. The Transformer extracts tempo-
ral and spectral features from raw vibration segments via multi-head
attention, while logic rules enforce label consistency and similarity
constraints that adapt to evolving cluster patterns. We tested our ap-
proach on two benchmark datasets: on the OEDI recorded by us-
ing SpectraQuest’s Gearbox Fault Diagnostics Simulator, where it
achieves an F1 score of 0.992, and on the nine-class UoC gear fault
data it reaches 0.899 versus 0.756 for a Transformer alone, thus de-
livering accurate and interpretable fault classification.

1 Introduction

Rotating machines are used in many industrial settings, and hid-
den faults have been shown to cause costly shutdowns or safety
risks [12, 25]. Older vibration methods pick out spectral peaks, en-
velope signals, or wavelet features and feed them into rule-based or
fuzzy systems [13, 21, 2, 4]. However, these hand-crafted steps take
a lot of work and often break down when the data get large or the
operating conditions change.

Deep end-to-end models. Convolutional, recurrent and autoen-
coder networks now learn features directly from raw signals, out-
performing classical methods on CWRU, IMS and MFPT bench-
marks and adapting through augmentation or domain adversaries
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[11, 15, 7, 26, 27, 23, 28]. Surveys published summarise these gains
but note two gaps: large labelled datasets remain necessary and ex-
planations are opaque [29, 19, 24].

Neuro-symbolic promise and objective. Integrating neural rep-
resentation learning with symbolic reasoning can inject domain
rules, boost data efficiency, and produce human-readable explana-
tions [5, 6, 18]. We therefore propose a diagnosis model that cou-
ples a Transformer with a Logic Tensor Network (LTN) [22]. Self-
attention captures long-range temporal patterns, while the LTN layer
enforces first-order rules linking observed cues to fault modes.

2 Related Work

Transformer architectures have recently become a backbone for ma-
chinery diagnosis. The Time-Series Transformer (TST) lifted CWRU
accuracy to 99.1%, four points above CNN/LSTM baselines [14].
Existing improvements include CNN tokenisers [16] and works
which prune redundant attention and halves the number of floating
operations without sacrificing accuracy [10]. Vision-style patching
further enables a Siamese ViT to reach state-of-the-art performance
with only 20% labeled data [8].

Efforts to inject expert knowledge have given rise to several neuro-
symbolic approaches. LTNs embedded in LSTM backbones enhance
generalisation when labels are limited [9]. DeepProbLog combines
neural perception with probabilistic logic programming, and forces
models to predict intermediate engineering quantities, enabling sub-
sequent auditability [17].

Despite these advances, Transformer-based models rarely encode
formal knowledge, whereas LTN systems rely on legacy feature
extractors. To date, no study has combined a Transformer back-
bone with a neuro-symbolic reasoning layer. Our work unifies self-
attention representation learning and differentiable first-order logic
in a single end-to-end framework aimed at improving accuracy, data
efficiency and transparency.

3 Methodology

We fuse first-order reasoning with a lightweight 1-D Transformer
to classify sample vibration segments(best results with 20) under ex-
plicit consistency constraints. Symbolic rules are encoded with Logic
Tensor Networks (LTNs) [1] their penalisation signals update the net-
work, letting prior knowledge shape the learned features.



3.1 LTN Optimisation

An LTN grounds every formula φ in a truth degree Gθ(φ) ∈ [0, 1].
Model parameters θ are learned by maximising the aggregated satis-
fiability of a rule set K:

θ⋆ = argmax
θ

Aggφ∈KGθ(φ). (1)

We adopt the aggregated p-mean error (ApME),

ApME(x1:n) = 1−
(

1
n

∑
i

(1− xi)
p
)1/p

, (2)

with p=2; low-valued clauses thus receive larger gradients.
Each class k is a fuzzy predicate Pk(x) = p̂k, i.e. the network

softmax output. For a labelled segment x with ground truth y we
impose

Py(x), ¬Pk(x) (k ̸= y), (3)

using product t- and s-norms plus the Goguen implication; run-time
overhead is negligible.

3.2 Hybrid Encoder meets LTN

Each vibration segment is a length-20 time series x ∈ R1×20 with a
categorical label y ∈ {1, . . . , C}, where C is the number of classes
in the current dataset. The proposed model attaches a lightweight
one-dimensional Transformer to the LTN layer, so that symbolic con-
straints are applied directly to the learned representation.

Transformer encoder. The raw signal is split into three over-
lapping patches of ten samples (stride = 5). A 1×10 convolu-
tion projects each patch to a 64-dimensional token ui. A learn-
able class token zcls is prepended to these tokens and sinusoidal
positional encodings are added, yielding the input sequence Z0 =[
zcls ∥ u1 ∥ u2 ∥ u3

]
. Six pre-norm Transformer layers, each with

eight attention heads, refine the sequence. With only four tokens (one
CLS + three patches) the memory footprint remains low while self-
attention still captures long-range dependencies. The updated CLS
token provides a global summary, whereas the three patch tokens are
average– and max-pooled, concatenated, and fed to a two-layer MLP
that outputs class probabilities p̂(x) = (p̂1, . . . , p̂C). These proba-
bilities ground the LTN predicates Pk(x) = p̂k, allowing the logic
rules to influence the entire encoder.

Similarity rules. To regularise the embedding space, similarity
rules are refreshed after every training epoch. For each class k
we run k-means on the current embeddings and retain two cen-
troids {µk,1,µk,2}, sufficient to distinguish the low- and high-load
regimes observed in practice. Proximity of x to centroid i is mea-
sured by a Gaussian kernel

Sk,i(x) = exp
[
− 1

2

∥∥f(x)− µk,i

∥∥
2

]
,

which yields the soft implication

Sk,i(x) ⇒ Pk(x). (4)

Rule (4) encourages any sample that lies close to a class centroid to
be assigned that class, yet it never conflicts with the primary label
rules in (3).

Training objective. Let {αr}Rr=1 be the truth values of all instan-
tiated rules. We define the satisfiability aggregation

SatAgg = 1−

√√√√ 1

R

R∑
r=1

(
1− αr

)2
, (5)

which attains its maximum value of 1 when every rule is fully satis-
fied. The overall loss is then

L = 1− SatAgg + β∥Θ∥22 , (6)

where Θ comprises all learnable parameters and β = 10−3 is the
weight-decay coefficient.

4 Experimental Evaluation

All experiments ran on a 16 GiB Linux workstation with an AMD
EPYC CPU. Datasets are UoC gearbox [3] (nine fault modes, 20
kHz): HEA (healthy), CTF (chipped-tooth PGB), MTF (missing-
tooth PGB), RCF (root-crack PGB), SWF (surface-wear PGB),
BWF (ball-wear bearing), CWF (composite-wear races), IRF (inner-
race bearing), ORF (outer-race bearing); and data from OEDI [20]
recorded by using SpectraQuest’s Gearbox Fault Diagnostics Simu-
lator, refered to as SpectraSimulator (healthy, broken-tooth).

Pre-processing Continuous vibration signals are segmented into
windows of 20 samples with a stride of 10 (yielding 1 × 20 in-
puts). Signals are standardised; faulty frames are discarded. Class
balance is enforced by uniform sampling. Splits use a stratified 80/20
train–test ratio, and results are averaged over two folds.

Training Details Training uses Adam with a learning rate of 10−4

and ℓ2 weight-decay 10−3. When training the vanilla variant, train-
ing has been kept identical.

4.1 Results

UoC. Our hybrid model attains 89.9 % accuracy and macro-F1 =
0.900 as in Table 1, outperforming the vanilla Transformer with an
F1 = 0.756. Gains are largest for data-sparse classes such as HEA
and CTF, highlighting the benefit of logical regularisation.

Table 1. Results comparison on the UoC dataset: Transformer–LTN vs.
vanilla Transformer (the transformer itself has been kept identical).

Hybrid Transformer–LTN Vanilla Transformer
Class Prec. Rec. F1 Prec. Rec. F1
HEA 0.830 0.940 0.881 0.611 0.795 0.691
CTF 0.895 0.819 0.855 0.600 0.723 0.656
MTF 0.921 0.843 0.881 0.919 0.687 0.786
RCF 1.000 0.964 0.982 0.976 0.952 0.964
SWF 0.928 0.928 0.928 0.769 0.843 0.805
BWF 0.860 0.892 0.876 0.790 0.590 0.676
CWF 0.906 0.917 0.911 0.716 0.810 0.760
IRF 0.847 0.867 0.857 0.720 0.651 0.684
ORF 0.916 0.916 0.916 0.824 0.735 0.777

AVG 0.900 0.898 0.899 0.770 0.754 0.756

SpectraSimulator. With only two classes, our model reaches
macro-F1 = 0.992 (Table 2), confirming a strong generalization.



Table 2. 1-D Transformer with LTN model results on SpectraSimulator.

Class Prec. Rec. F1

Healthy 0.987 0.997 0.992
Broken tooth 0.997 0.987 0.992

5 Conclusion
We introduced a compact neuro-symbolic pipeline that unites a 1-
D Transformer with LTNs, enabling end-to-end learning under first-
order constraints. Experiments on real and simulated gear faults show
that logical supervision raises both accuracy and class balance with-
out extra computation, while every prediction remains traceable to
interpretable rules.
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