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Abstract. Large Language Models can use logical deduction to an-
swer natural language questions. However, they remain black-boxes
and their chains-of-thought can be erroneous. In this paper, we pro-
pose to adapt VANESSA, a method for chain-of-thought verification,
to the task of reasoning-based question answering. The result is a
logic-based, transparent method for answering natural language ques-
tions. VANESSA can deliver a formal proof of correctness of its an-
swer using a logical reasoner. Our experiments across various datasets
show that the symbolic variant yields high precision, but suffers from
low recall due to phrasing differences. The neuro-symbolic variant
of VANESSA, which incorporates textual entailment via a black-box
model, however, is competitive with the state of the art. We present a
demo interface that allows users to interact with the system.

1 Introduction
Reasoning-based question answering is the task of answering a ques-
tion about a paragraph of text by help of logical deduction. We focus
more specifically on yes/no questions, as in the following example:

Context: If someone likes bread, then they like chocolate or cheese.
Anyone who likes eating tomatoes hates even the idea of cheese.
Lisa is the biggest tomato lover I know, but she also is a fan of
bread.
Question: Is Lisa fond of chocolate?

This task is useful not only for answering complex questions, but also
for gauging whether a system goes beyond a surface-level comprehen-
sion of the text. Large Language Models (LLMs) are relatively good
at such reasoning tasks, in particular with chain-of-thought prompting.
However, LLMs remain black-boxes: chains-of-thought can contain
erroneous reasoning steps [4, 9] even when the final answer is correct.

VANESSA is a method to verify the reasoning steps of LLMs [9].
It can run in a symbolic mode (yielding completely transparent verifi-
cations), and in a neuro-symbolic mode (which uses natural language
inference to bridge variations in phrasing). For example, “is a fan of
bread” entails “likes bread”, and so the neuro-symbolic VANESSA
can use both phrases in a proof.

In this paper, we adapt VANESSA to perform reasoning-based
question answering directly, minimizing the use of LLMs in the infer-
ence process. Our experiments on multiple logical QA benchmarks
compare VANESSA to black-box and neuro-symbolic competitors,
and show that (1) the symbolic variant of VANESSA consistently
achieves the highest precision across all datasets and competitors
when it finds a proof and (2) the neuro-symbolic variant of VANESSA
is competitive in overall performance with purely neural methods,
while additionally delivering a formal proof tree. Our graphical user

interface allows the audience to interact with the system, pose ques-
tions, and inspect the answers and proof trees.

2 Related Work
LLMs have been used extensively for all kinds of reasoning problems.
Chain-of-thought prompting [15] has further increased model per-
formance while giving the user access to a proof, but hallucinations
and formal errors still can be present [4, 9]. To address these issues,
several works have investigated neuro-symbolic methods that use
external tools such as calculators or knowledge bases in combination
with LLMs, increasing performance on a variety of tasks [14, 2, 3, 12].
For logical reasoning on text, the most common approach has been to
make an LLM parse the input into a machine-readable format such as
Prolog [6, 1, 16] or First-Order Logic [7], and then perform reasoning
over these structures with theorem provers. However, the parsing into
a logical formalism is a black-box step: If we don’t trust the LLM on
formal reasoning in a chain-of-thought, then there is no reason to trust
it on the translation to formal logic.

Our work, in contrast, proposes a fully symbolic and transparent
reasoning method. To increase recall, our method can be run in a
neuro-symbolic variant, which uses an LLM, but only for Natural
Language Inference (NLI). Thereby, the area of distrust is reduced to
a single atomic task, on which LLMs usually perform well. Besides,
an NLI step is usually trivial to verify manually.

3 VANESSA
VANESSA is a method to verify the reasoning within a chain-of-
thought [9]. The input to VANESSA is a context, a boolean question,
and a chain-of-thought that is composed of reasoning steps, each
consisting of premises and a conclusion. VANESSA then checks every
single reasoning step and outputs “Correct” if every step is valid and
every premise is grounded in the context or in previous conclusions.
VANESSA operates in three phases: (1) a shallow symbolic parsing
of the context and the question, (2) an augmentation of the logical
forms through Natural Language Inference (NLI), and (3) symbolic
reasoning. Step (2) can be performed symbolically by string matching
(resulting in the fully symbolic variant of VANESSA) or with an LLM
(yielding a neuro-symbolic variant, which is more robust to variations
in phrasing).

The present work adapts VANESSA to perform question answering
directly, without requiring a given chain-of-thought. The input to
our adapted method is a context, consisting of rules and facts in
natural language, and a boolean question (as in the example in the
introduction). The context has to be self-contained, i.e., no external



Figure 1: Experimental results (left) and proof tree shown by our demo for our running example (right)

Accuracy Prec Rec F1

ProofWriter

⋆⋆ VANESSA symb. 88.27 97.56 83.33 89.89
VANESSA neuro 65.90 63.03 78.12 69.77

LINC 73.55 94.52 71.88 81.66
CoT 45.29 40.19 44.79 42.37

Direct 27.04 24.83 38.54 30.2

ProntoQA

VANESSA symb. 39.01 96.77 23.62 37.97
⋆⋆ VANESSA neuro 84.18 85.03 98.43 91.24

LINC 65.87 85.09 76.38 80.5
CoT 68.92 74.48 85.04 79.41

Direct 59.16 59.38 74.8 66.2

FOLIO

VANESSA symb. 36.05 100.0 2.96 5.75
⋆ VANESSA neuro 49.52 59.14 40.74 48.25

LINC 34.12 86.84 24.44 38.14
CoT 55.77 57.06 74.81 64.74

Direct 55.92 53.3 71.85 61.2

LogicBench BD

VANESSA symb. 50.00 x x x
⋆ VANESSA neuro 52.28 55.56 50.0 52.63

LINC 24.91 40.0 20.0 26.67
CoT 59.12 57.69 75.0 65.22

Direct 63.69 62.5 75.0 68.18

The table shows accuracy, as well as micro-averaged precision, recall, and F1 for the
“yes” & “no” classes. The background color indicates white-box, gray-box, and black-box
approaches. The star ⋆ is for the best white-box/gray-box approach; the double star ⋆⋆ for a
white-box/gray-box approach that beats even black-box approaches.

knowledge is needed to answer the question. There are three possible
answers: “yes”, “no” and “unknown” (if the context does not permit a
definite conclusion).

We transform this input into a pseudo-reasoning step, which has
the entire context as premises, and the question (in the form of an
affirmative sentence) as the conclusion. Our adapted VANESSA then
tries to validate the reasoning step. If this succeeds, the answer to the
question is “yes”. If it fails, our method tries to validate the negation
of the conclusion. If that succeeds, the answer is “no”. Otherwise
the answer is “unknown”. When VANESSA successfully finds an
answer, it automatically constructs a proof tree, which is presented as
an explanation supporting the answer.

4 Experiments
We evaluate our method on several logical reasoning datasets:
ProofWriter [13] (“Depth 5, Open World Assumption” Dev set), Pron-
toQA [10] (using the 100 first instances of the 4-hop Composed Ran-
dom set from ProntoQA-OOD [11]), FOLIO [5], and LogicBench [8]
(for which we manually relabeled negative ground truth examples
as either “no” or “unknown” and subsampled the datasets to achieve
a balance between the possible answers). We compare several ap-
proaches: black-box methods (prompt-instructed LLM for direct an-
swer or for chain-of-thought), gray-box neuro-symbolic approaches
(LINC [7] and VANESSA neuro-symbolic) and white-box (symbolic
VANESSA). Experiments use LLaMa3-8B-Instruct as the model, with
task-specific prompts.

Figure 1 (left) shows that the white-box symbolic VANESSA per-
forms as expected: Whenever it delivers results, these consistently
have the highest precision. It even reaches best overall accuracy on
ProofWriter. However, the method falls behind on recall because of its
inability to deal with phrasing variations. On the LogicBench datasets,
this issue goes so far that the method fails to deliver any verdict at all,
always outputting “unknown”, which results in an accuracy of 50%
on subsets where half the ground truth labels are “unknown”.

Among the gray-box approaches, neuro-symbolic VANESSA con-
sistently achieves higher accuracy than LINC. On several datasets,

VANESSA beats even the black-box approaches, a feat that LINC
does not achieve. As expected, among the black-box approaches,
chain-of-thought prompting generally outperforms direct prompting
approach, albeit only on 3 out of the 5 datasets.

Overall, our experiments thus show that symbolic and neuro-
symbolic methods can compete with black-box models in terms of
accuracy, with the neuro-symbolic VANESSA emerging as the best-
performing gray-box method.

5 Demo
A demonstration of our system is available at https://vanessa-demo.
org/, or can be downloaded for local use. The user can input premises
and a conclusion for a logical reasoning problem, and run VANESSA
in either symbolic or neuro-symbolic mode. The neuro-symbolic
variant uses LLaMa3.2-3B. It is somewhat slow in the online interface
due to computational requirements, but can be faster when run locally.

When VANESSA finds a solution to the reasoning problem, the
interface displays a proof tree (Figure 1 right). Gray arrows indicate
textual entailment, while green arrows indicate logical deduction.
The interface also shows the parsed input sentences, the detected
entailments and a linearized textual proof, allowing users to trace the
reasoning process in a transparent way.

In the demo, users can play around with the preset examples that
the GUI offers from several benchmarks. Users can also modify the
examples, for example by rephrasing sentences to test the system’s
robustness, adding negations or changing conclusions. Finally, they
can also submit their own reasoning problems and see if the system
can give the correct response.

6 Conclusion
We have presented an adaptation of the VANESSA method for an-
swering natural language questions. We hope that this work paves
the way for the development of more explainable and transpar-
ent logical reasoning systems. All code and data is available at
https://github.com/dig-team/VANESSA/tree/demo.

https://vanessa-demo.org/
https://vanessa-demo.org/
https://github.com/dig-team/VANESSA/tree/demo
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