
Explaining CNN Classifications Using Small Patches
Jean-Marc Boutaya,*,1, Quentin Leblanca, Damian Boquetea, Deniz Köprülüa, Ludovic Pfeiffera and

Guido Bolognaa,1

aDepartment of Computer Science, University of Applied Sciences and Arts of Western Switzerland, Rue de la
Prairie 4, 1202 Geneva, Switzerland

ORCID (Jean-Marc Boutay): https://orcid.org/0009-0000-4138-204X, ORCID (Guido Bologna):
https://orcid.org/0000-0002-6070-3459

Abstract.
Convolutional neural networks (CNNs) have achieved remarkable

success in image classification tasks. However, their decision-making
processes remain difficult to interpret, limiting their adoption in sen-
sitive domains. We present here a novel explainability method that
generates global explanations in the form of propositional rules, com-
bining both pixel values and probabilities associated with sub-image
patches. Our approach integrates a multi-layer perceptron (MLP)
trained on image patches, a CNN trained on patch probabilities, and
a global rule extraction technique. The key idea is to highlight the
most relevant image regions that the model uses for its predictions
while maintaining high classification performance. We apply this
method to three image classification problems: MNIST, CIFAR-10,
and FER2013. The generated rulesets capture meaningful patterns
in the data and provide accurate and faithful explanations. Although
the rules generalize well on simpler datasets like MNIST, both sim-
ple and complex image classification problems, such as CIFAR-10,
result in large rulesets, with the size increasing further as visual vari-
ability grows. Our method achieves competitive performance with
standard CNNs while adding a rule-based explanation that highlights
the inference process.

1 Introduction
The explainability of deep neural networks (DNNs) remains an open
research problem. In the XAI domain, popular techniques applied to
DNNs include LIME [11], SHAP [5], and GradCAM [12]. Some ob-
ject recognition techniques generate heatmaps, e.g. highlighting im-
portant regions that contribute to the classification. Reviews of XAI
methods have been presented in [8, 9].

A problem with heatmaps provided by GradCAM and similar
methods is that they can highlight the same area for different classes,
and they do not clarify the inference process. This work proposes
a novel explainability method that uses propositional rules with an-
tecedents representing small patches of an image to explain classifi-
cation decisions. Furthermore, each patch represented in a rule is as-
sociated with a probability. For example, a rule could be: “If a patch
of a certain size at a given position contributes to a given class with
a certain probability, then a certain class of objects is present".

Very few works have tried to generate propositional rules from
DNNs. In previous work, our rule extraction algorithm was applied

∗ Corresponding Author. Email: jean-marc.boutay@hesge.ch.
1 Equal contribution.

to multi-layer perceptrons (MLPs), support vector machines (SVMs),
ensembles of MLPs, and convolutional neural networks [3, 2, 1, 4].
The key idea behind our algorithm is to determine axis-parallel dis-
criminatory hyperplanes using a greedy algorithm that, at each iter-
ation, tries to maximize fidelity. The main contribution of this work
is the patches obtained by applying the rule extraction algorithm to a
second-trained model, which associates a probability with each patch
of each image. We illustrate our method with three benchmark prob-
lems. Finally, we present several examples of rules that explain CNN
classifications. The following parts present the rule extraction algo-
rithm, the methodologies employed in this study, the experiments,
and the conclusion.

2 Methods and models
2.1 The use of axis-parallel hyperplanes

Let us describe a general MLP model and denote x(0) as a vector for
the input layer. For layer l + 1 (l ≥ 0), the activation values x(l+1)

of the neurons are

x(l+1) = F (W (l)x(l) + b(l)). (1)

W (l) is a matrix of weight parameters between two successive layers
l and l + 1; b(l) is a vector called the bias and σ(x) is a sigmoid
activation function:

σ(x) =
1

1 + exp(−x)
. (2)

When W (0) is a diagonal matrix and the activation function in the
first hidden layer is a step function t(x) given below, we obtain axis-
parallel hyperplanes; one for each input neuron.

t(x) =

{
1 if x > 0;
0 otherwise.

(3)

To efficiently train an MLP with axis-parallel hyperplanes, we re-
place the step function with its generalization, which is a staircase
activation function. Each step of this function creates an axis-parallel
hyperplane [1].

The creation of axis-parallel hyperplanes can be applied to CNNs.
In this case, adding a special layer after the input layer is suffi-
cient [4]. It plays the role of quantization via a diagonal matrix of
weights (see eq. 1) and a staircase activation function. We denote this



layer as QIL (Quantized Interpretable Layer). Furthermore, the QIL
can simply act as a normalization layer, meaning it is frozen during
training. In fact, the QIL weight values depend on the averages and
standard deviations of the training data for each input neuron [2, 4].

2.2 Our local and global rule extraction algorithms

Fidelity refers to the degree to which the extracted rules mimic the
behavior of a model. This is a measure of the accuracy with which
the rules represent the decision-making process of a neural network.
Specifically, with s samples in a training set and s′ samples for which
the classifications of the rules match the classifications of the model,
the fidelity is s′/s.

Our local rule extraction algorithm strongly uses fidelity. During
rule construction, at each iteration, it determines the hyperplane that
involves the highest increase of fidelity. Its computational complexity
is linear with respect to the product of the following: the dimension-
ality of the classification problem, the number of training samples,
the maximum number of antecedents per rule, and the number of
steps in the staircase activation function [4].

The execution time of our local rule extraction technique can be
accelerated by considering two dropout parameters: p and q. Essen-
tially, p determines at each step the proportion of input variables that
will not be taken into account. The parameter q is similar, but con-
cerning excluded hyperplanes.

Our global rule extraction algorithm generates a set of rules for
a training set of size s. It corresponds to a covering technique that
calls our local rule extraction algorithm s times. Therefore, it first
generates s rules and then uses a heuristic to select a subset of the
rule base that covers all s samples. Then, a simple heuristic consists
of ranking the rules in descending order according to the number of
samples covered, and then selecting the rules in descending order
until all the samples are covered.

2.3 Methodologies for obtaining rules involving
patches

Our goal is to obtain explanations on image samples classification
using patches reflecting exactly the model’s behavior. To do so, we
implemented two different yet similar methodologies. The diagram
of the first one is illustrated in Figure 1.

In this method, we first split an image into sub-image patches of
size N×M×C, with N the height, M the width, and C the number
of channels. The goal is to get localized explanations of the image.
We start at the top left of the image to get the first patch; then we
slide horizontally and vertically with a stride S to scan the whole im-
age and get all patches. Usually, we choose a patch size of 7× 7 and
a stride size of 1. If the image has size H ×W × C (height, width,
channels), we obtain

(⌊
H−N

s

⌋
+ 1

)
×

(⌊
W−M

s

⌋
+ 1

)
patches per

image. We build a dataset composed of all these patches with their
corresponding location in the image, and we train an MLP on it.
Then, for each patch, we extract its classification probability for each
class. We construct another dataset by concatenating these probabil-
ities with the original image samples. The shape of each data in the
new dataset is

(⌊
H−N

s

⌋
+ 1

)
×

(⌊
W−M

s

⌋
+ 1

)
+ (H ×W × C).

We train it on a custom model composed of a QIL (cf. Sect. 2.1)
and two separate networks: a VGG-16 and a custom CNN, process-
ing respectively the image and the patch probabilities, reunited at the
end through a final MLP. The predictions of this model are used to
obtain rules explaining the model with our global rule extraction al-
gorithm described above in Sect. 2.2. A rule can contain two types of

Input (images HxWxC)

Patches (7x7)

Train MLP on
patches and
coordinates

Probabilities on
patches

(H-6) x (W-6)
x

nbClass

Data

Dataset

(H-6) x (W-6)
x

nbClass)
+

(HxWxC)

Weights

QIL

(HxWxC
(image after QIL)

,
(H-6) x (W-6) x

nbClass (probabilities
after QIL))

Train
VGG+CNN

+MLP(concat)
Predictions

Global rule
extraction

Probability_And_Image

Figure 1. Diagram of the first methodology using the probabilities of train
patches and the original image sample separately in the model.

antecedents, either image pixels (coming from the original image) or
the probability of a patch for a specific class.

The second methodology is similar to the first and gives the same
kind of rules. Its diagram is shown in Figure 2. The first steps of the
pipeline are the same; we train patches on an MLP and construct the
same dataset as before. The second model is different. The data also
passes through a QIL, but then we train different VGGs, one for each
class in the dataset. Each VGG is responsible for distinguishing one
class from all the others and outputs the probability that each sample
belongs to that class. The VGG responsible for class i takes input
data of shape H×W × 3. This data is composed of the probabilities
of the patches for class i that have been padded to match the size
of the image, along with the red and green channels of the original
image. The prediction for each sample is the maximum among all
class prediction scores. The rules are then computed in the same way.

3 Experiments

3.1 Datasets

We applied our method to three different datasets: MNIST [6],
CIFAR-10 [10], and FER2013 [7]. The MNIST dataset is a collection
of 28× 28 handwritten digits of classes 0-9 and is a common bench-
mark for image classification. It is composed of tiny, black and white
images. CIFAR-10 is another classification benchmark with colorful
32 × 32 × 3 images of ten different classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. It is known to be a
more difficult problem than MNIST. Finally, we used the FER2013
dataset. It is a set of black and white 48×48 images that represent fa-
cial expressions. There are seven classes: angry, disgust, fear, happy,
sad, surprise, and neutral. To simplify the difficulty of the classifica-
tion, we have chosen to merge all the non-happy classes into one new
class, resulting in two classes: happy and non-happy. This leads to an
imbalanced dataset containing 33.4% of happy class samples. Table
1 shows for each dataset the number of training and testing samples,
the size of the images, and the number of classes.



Weights

Data10 x 

HxWx3

10 x
Train VGG

Predictions
(Max(P(Cli)))

Global rule
extraction

Padded
probabilities

R

G

Probability_Multi_Nets

Input (images HxWxC)

Patches (7x7)

Train MLP on
patches and
coordinates

Probabilities on
patches

(H-6) x (W-6)
x

nbClass

Dataset

(H-6) x (W-6)
x

nbClass)
+

(HxWxC)

QIL

Figure 2. Diagram of the second methodology using the probabilities of
train patches and the original image sample together in the model.

Dataset #Train samples #Test samples Image size #Classes
MNIST 60000 10000 28×28× 1 10
CIFAR-10 50000 10000 32×32× 3 10
FER2013 28709 7178 48×48× 1 2

Table 1. Datasets used in the experiments.

3.2 Metrics

We used several different metrics to evaluate our models and rulesets
on the datasets. We define an activated rule for a sample as a rule
whose conditions (or antecedents) are satisfied by that specific sam-
ple. A correct rule is defined as an activated rule that is faithful to
the model’s prediction, and a wrong rule as a non-faithful activated
rule. The fidelity of a ruleset generated from a training set is 100%.
It is essential to note that if no rules are activated for a specific sam-
ple, the ruleset will agree by default to the model’s prediction. The
statistics we consider are the following:

– The training and testing accuracy of the first MLP model;
– The training and testing accuracy of the second model using VGG-

16;
– The number of rules in the ruleset;
– The mean number of antecedents per rule;
– The mean covering size per rule (How many train samples cover

the rule);
– The global fidelity of the ruleset on the test set (How accurately

the ruleset reflects the behavior of the model);
– The global accuracy of the ruleset on the test set (The percentage

of correct predictions from the ruleset);
– The test accuracy when the ruleset and the model agree (The rate

of correct predictions for samples for which the ruleset and the
model give the same prediction);

– The test accuracy when the activated rules and the model agree
(The percentage of correct predictions for samples for which their
activated rules and the model give the same prediction);

– The explainability rate (The rate of samples for which the acti-
vated rules are all correct, or all agree on the same class);

– The default rule rate (The rate of samples for which no rule in the
ruleset is activated);

– The mean number of correct activated rules per sample;
– The mean number of wrong activated rules per sample.

3.3 Results

3.3.1 Model architectures and training settings

We detail the architecture of the models and the parameter settings
used in our experiments. We have chosen the same configuration for
MNIST and CIFAR-10. We trained the first model with patches of
size 7 × 7 and a stride of size 1. We used 100 steps in the stair-
case activation function in the QIL and a dropout of 0.95% of in-
put variables and hyperplanes during rule extraction. We applied the
first methodology described in Sect. 2.3. The three datasets were all
learned by the same MLP model on the patches. The model splits
into two branches. The first is dedicated to learning each patch and
has two dense layers of sizes 128 and 64. The second has only one
dense layer of size 8 and focuses on the localization of the patch
in the original image, characterized by the coordinate of its upper-
most point on the left. The two branches merge and pass through a
dense layer of size 64, and through an output layer with softmax,
whose size matches the number of target classes. It was trained for
60 epochs with a categorical cross-entropy loss and optimized using
the Adam algorithm with a learning rate of 1 × 10−3. During the
second training, the model splits also in two branches. The images
are resized to 224×224, passed through a VGG-16 and a dense 256-
dimensional layer with a dropout of 30% and batch normalization.
On the other side, the probabilities of patches are resized to twice in
height and width, passed through three 3× 3 convolutional layers of
sizes 64, 128, and 256, and a dense layer of size 256. They use batch
normalization and a LeakyReLU activation function. A max pooling
of size 2 and an L2-regularization of 5 × 10−4 are used for con-
volutions, and a final dropout of 40% is applied. The two branches
merge and pass through three dense layers of sizes 256, 128, and
64, ending with an output using the softmax activation function. It
was trained for 80 epochs, with categorical cross-entropy loss, and
optimized with Adam with a learning rate of 1× 10−5.

For FER2013, we used the same staircase activation function for
the QIL element, but the patch size is 8×8 with a stride of 1, and the
dropout is 0.9% of the input variables and hyperplanes. The second
methodology has been used. The second training consists of an ap-
plication of a VGG-16 for each class during 80 epochs, as described
in Sect. 2.3.

For each dataset, Table 2 shows the number of training and test-
ing patches and the input and output shape of the first MLP model.
Table 3 shows the number of training and testing samples in the sec-
ond model using VGG-16, and the input and output shape of these
samples.

Dataset #Train patches #Test patches Input size #Classes
MNIST 29040000 4840000 7×7× 1 10
CIFAR-10 33800000 6760000 7×7× 3 10
FER2013 48259829 12066218 8×8× 1 2

Table 2. Size of datasets in the first MLP model.



Dataset #Train samples #Test samples Input size #Classes
MNIST 60000 10000 5624 10
CIFAR-10 50000 10000 9832 10
FER2013 28709 7178 5666 2

Table 3. Size of datasets in the second model using VGG-16.

3.3.2 Classification performance

The results presented in this paper were only computed on a sin-
gle execution and do not represent a mean across several runs, nor
do they contain a variance. This is mainly due to the high computa-
tional cost of the entire pipeline, even when using a GPU. However,
based on our past experiments, we are confident that these results
would remain stable across executions, with minimal variance, and
are therefore representative of the model’s expected behavior.

The accuracies of the first MLP model trained on patches are
shown in Table 4. The results of MNIST and CIFAR-10 are not that
high because it is difficult to classify between 10 classes with only
patches of size 7 × 7. In the case of FER2013, the performance is
strongly related to the rate of non-happy samples, which is 66.6%.
The model will almost always predict "non-happy".

Dataset Train accuracy Test accuracy
MNIST 50.85 51.23
CIFAR-10 33.75 33.47
FER2013 74.84 75.29

Table 4. Accuracy of first MLP model.

The performance of the second model, represented in Table 5, is
much better. This is mainly because when we process one sample, we
consider the original image sample and all its patches together. All
three problems perform well, exceeding 97% in training accuracy.
The test accuracies are slightly lower for CIFAR-10 and FER2013,
but stay above 92%. These results can be compared with the results
shown in Table 6, which reports the mean and standard deviation
over 10 runs of training a VGG-16 for 80 epochs on the original im-
ages. The performance of our method is really close to these, show-
ing that adding the probability of patches did not really affect the
performance.

Dataset Train accuracy Test accuracy
MNIST 99.998 99.61
CIFAR-10 99.97 92.65
FER2013 97.38 92.46

Table 5. Accuracy of second model with VGG-16.

3.3.3 Statistical analysis of rulesets

Table 7 shows the statistics of the ruleset for each dataset. CIFAR-
10 is a more difficult problem globally, and therefore, more rules are
necessary to cover every training sample. The object of interest in the
image, for example, a cat, can appear in many different orientations,
under various perspectives, scales, and positions. That is the main
reason why there are so many rules in the generated ruleset. On the
contrary, the faces from FER2013 and the digits from MNIST are
very often centered in the image, with similar size and position.

The number of antecedents per rule is nearly the same for each
dataset, between three and four. This is fewer than what we could

Dataset Train accuracy(std) Test accuracy(std)
MNIST 99.94(3.5*10−4) 99.56(6*10−4)
CIFAR-10 99.93(9.1*10−4) 92.87(4.5*10−3)
FER2013 96.47(1.2*10−2) 92.89(2.8*10−3)

Table 6. Accuracy of VGG-16 trained with the original images, based on
ten trials.

Statistics MNIST CIFAR-10 FER2013

#Rules 1825 22233 7277
Mean #Antecedents per rule 3.18 3.98 3.75
Mean covering size per rule 473.05 6.22 23.38
Fidelity 99.05 76.55 91.49
Rule accuracy 98.82 72.79 86.21
Test accuracy when rules
and model agree 99.70 93.95 93.0

Test accuracy when activated
rules and model agree 99.77 95.61 93.63

Explainability rate 97.81 69.12 83.99
Default rule rate 2.13 24.42 16.01
Mean number of correct
activated rules per sample 14.45 1.96 5.75

Mean number of wrong
activated rules per sample 0.06 0.94 0.73

Table 7. Statistics of explanatory rules.

have expected. This means that, on average, only three or four con-
ditions are necessary in a rule to cover only samples that have been
classified into the same category by the model.

MNIST requires fewer conditions to obtain rules that are faithful to
the model, and these rules cover many more training samples, mean-
ing that they capture more common patterns in the training set. They
also generalize well, achieving a fidelity of 99.05% and a rule accu-
racy of 98.82% on the test set. Furthermore, the rules for CIFAR-10
are less efficient on the test set, with a considerable drop in fidelity
and accuracy, reflecting the difficulty in finding reliable and repre-
sentative rules.

A noteworthy observation is the increase in test accuracy when
considering only samples for which the rules and the model agree on
the prediction. It increases even further when considering only ac-
tivated rules (in this case, uncovered samples in the test set are not
taken into account). This shows the global relevance of the ruleset,
which sometimes outperforms the model. We notice that many sam-
ples activate several rules, which means that there are various ways
to explain the decision of one sample. Sometimes, one can obtain a
rule explaining the test sample that does not reflect the model’s de-
cision. It is rare for MNIST but common for the two other datasets.
We should prioritize a rule faithful to the model, but it is interesting
to analyze these "wrong" rules that maybe predict the truth.

Note that a rule is found for approximately 97.8% of the MNIST
test samples, 69% for CIFAR-10, and 84% for FER2013. When no
rule is found or when they do not agree on the same prediction, our
local rule extraction algorithm would be performed, but this is out-
side of the scope of this work.

3.3.4 Computational cost

We now look at the computational cost. We need to train all patches,
then all probabilities and images, and finally execute the global rule
extraction algorithm. We may use GPUs to train the models, but our
rule generation is not yet implemented for GPU usage. However, it
is parallelized for multiple CPUs. In Table 8, we show the execu-



tion times when using one GPU for training and 48 CPUs for rule
generation.

Dataset MLP time CNN time Rule Extr. time
MNIST 75528s(~21h) 16158s(~4.5h) 29820s(~8h)
CIFAR-10 96413s(~27h) 14251s(~4h) 188563s(~52h)
FER2013 62660s(~17h) 16141s(~4.5h) 23931s(~7h)

Table 8. Execution time (in seconds) on each dataset, for the MLP training
on patches, the CNN training, and the rule generation. The MLP is trained

on one GPU, and the rules are generated using 48 CPUs.

3.4 Rules visualization

Let us now visualize some of the rules that we have obtained. Each
figure represents a sample and one of the rules that covers it. It is
made up of the original image, an image that contains all the an-
tecedents, and one image for each antecedent. There are two types
of antecedents: the probability of a patch for a specific class, repre-
sented by a patch on the image, or a pixel value, represented by a
single pixel. They are green if the condition inequality is ≥ and red
if it is <. The title of the sub-image describes exactly the antecedent.

Figure 3. MNIST rule of class 0 on a train sample.

3.4.1 Handwritten digits - MNIST
Let us start by looking at some of the rules that we generated for the
MNIST dataset. Figure 3 represents a rule of class 0 for a specific
sample. This rule has four antecedents. The three patches in the rule
are probability conditions for class 0 in these areas. The probability
needed goes above 67.65% for the first condition. The last antecedent
is a red pixel, which means that this specific pixel value has to be less
than 0.11 in the image. If the four conditions of the rule are met by a

sample, it will be classified as class 0 by this rule. This specific rule
covers 3362 training examples, which means that it is highly repre-
sentative of the digit 0. This rule has perfect fidelity and accuracy on
the train and test sets. Figure 4 shows another sample covered by this
rule, which means that the rule covers different shapes of zeros.

Figure 4. Same rule of class 0 represented for another train sample (in
addition to Fig. 3).

Figure 5. MNIST rule of class 9 on a train sample.

In Figures 5 and 6, we see a sample of class 9 covered by two dif-
ferent rules. The two rules have, again, perfect accuracy and fidelity.
As before, they cover many samples. We observe that a single sample
can cover several different rules in the generated ruleset. Both rules
have patches around the loop of digit 9. The green ones are related to
class 9, and the red one is the probability of another class. For the first
one represented in Figure 5, it is interesting to notice that without the
red patch, an 8 could fit perfectly the three green patches. That is the
reason why the rule needs to eliminate class 8 with a red patch at the
bottom, where an 8 will differ from a 9. In Figure 6, it is almost the
same, but with class 4 for the red patch. Digit 4 usually does not have



a signal on the top right of the image, but the other two green patches
could be part of a 4. Therefore, the rule needs to eliminate it with this
red patch, asking for a low probability of a 4 there.

Figure 6. Another rule of class 9 on the same train sample as in Fig. 5.

3.4.2 Colorful images - CIFAR-10

Figures 7 and 8 show a sample of a CIFAR-10 truck that activates
two different rules. It is worth noting that one of them uses many
pixels to classify the sample, and the other does not use any pixels.
In the first rule shown in Figure 7, the patches are related to the truck,
and all antecedents are placed in important spots: the sky, the road,
the truck itself, and the wheels (or underneath the truck). They are
the principal features of a truck image that can differentiate it from
other classes.

Figure 7. CIFAR-10 rule of class truck activated by a train sample.

The second rule (Figure 8) does not have a sky patch, but the high-
est patch contains a white area that could be interpreted as the sky.

The penultimate patch is a probability for the class frog, likely due
to the brown, gray, and blue colors present in the front of the truck.
The last one has a probability for the class ship. As an image of a
ship usually contains a transition between the water and the ship, the
transition between the truck and its wheels can look similar. It is in-
teresting to see how the model can use the other classes to predict an
image when it has been trained with patches first. This rule covers
only seven train samples and a unique test sample. It is perfectly ac-
curate and faithful on training samples, but even though it is accurate
on the covered test sample, it is not faithful, which means that the
ruleset predicts better than the model on this specific sample.

Figure 8. Another truck rule with the same train sample as in Fig. 7.

Another interesting class is the horse. Figure 9 illustrates a typical
rule that we obtain. We observe that patches are located on the head
and legs of the animal. There is also a patch eliminating the frog
class, as the principal colors of the image, the grass, sky, and the
brown of the horse, are often present in a frog image.

3.4.3 Facial expressions - FER2013
Figure 10 shows an example of the Happy class from the FER2013
dataset. There is a pixel in the corner of the eye, one patch in the
center of the mouth, one on the left side, and one on the right cheek.
Those spots are important for predicting a smile. The different facial
folds reveal the person’s expression, and that is where the model is
looking. An important point to note is that if we use smaller patches
during the first model training, the rules will consist exclusively of
pixels and will not use patches. This is likely due to the complexity
of classifying small patches, as it does not contain enough informa-
tion. This is the reason why we used patches of size 8 × 8 in this
experiment.



Figure 9. A rule of class horse activated by a train sample.

4 Discussion and Conclusion
We presented two new methodologies explaining the deep neural net-
works used for image classification. We obtained explanatory rules
expressed as patches and pixels of interest using a global rule ex-
traction technique. We provided several visualizations illustrating
the rules explaining the image samples. We did it on three differ-
ent datasets, showing possible results for different use cases. We are
not aware of any other work that generates global rules from CNNs
with conditions involving patches and pixels. As we used a VGG-16
model with minimal modification (we added the QIL element), our
models exhibit very good predictive accuracy. Another strength of
our method is that we can always find an explanatory rule to describe
a sample because we can activate our local rule extraction algorithm
if no rule in an extracted ruleset is applicable.

Our goal was to highlight the most important areas of the image
sample that the model uses to predict. In order to obtain good ac-
curacy and fidelity, we needed to train two different models and ex-
plain the second model with our global rule extraction technique. The
complexity of this method increases because of this, but the results

are convincing.
The number of rules obtained in the ruleset is very high for each

dataset, especially for Cifar-10. This is mainly because the rules need
to cover the entire training set, and each rule must have perfect fi-
delity. In Cifar-10, there are 10 different classes, and each object can
be anywhere in the image, in different scales and orientations. It is
harder to find rules that correspond to many images.

The highlighted patches and pixels in the rules provide valuable
information on the areas on which the model focuses and the links it
establishes between the different classes. Often, a rule will look like
this: If there is a strong probability for a class to be at some place on
the image, and a good probability for another class to be somewhere
else, but yet another class should not be at that place, then the rule
predicts a certain class. This shows how the model uses the patch
predictions to predict the sample.

We plan to try new methodologies and models to see how far per-
formance can be increased and how much we can improve the rel-
evance of the explanation. We wanted to test our method on bench-
mark problems. We will work on speeding up the whole process to
apply it to larger images.

Figure 10. A rule of class happy activated by a training sample.

Acknowledgements
This work was conducted in the context of the Horizon Europe
project PRE-ACT (Prediction of Radiotherapy side effects using ex-
plainable AI for patient communication and treatment modification),
and it has received funding through the European Commission Hori-
zon Europe Program (Grant Agreement number: 101057746). In ad-
dition, this work was supported by the Swiss State Secretariat for
Education, Research and Innovation (SERI) under contract number
2200058.



References
[1] G. Bologna. A rule extraction technique applied to ensembles of neural

networks, random forests, and gradient-boosted trees. Algorithms, 14
(12):339, 2021. doi: 10.3390/a14120339.

[2] G. Bologna and Y. Hayashi. A rule extraction study from svm on sen-
timent analysis. Big Data and Cognitive Computing, 2(1):6, 2018. doi:
10.3390/bdcc2010006.

[3] G. Bologna and C. Pellegrini. Constraining the mlp power of expression
to facilitate symbolic rule extraction. In 1998 IEEE International Joint
Conference on Neural Networks Proceedings. IEEE World Congress on
Computational Intelligence (Cat. No. 98CH36227), volume 1, pages
146–151. IEEE, 1998. doi: 10.1109/IJCNN.1998.682252.

[4] G. Bologna, J.-M. Boutay, D. Boquete, Q. Leblanc, D. Köprülü, and
L. Pfeiffer. Fidex and fidexglo: From local explanations to global ex-
planations of deep models. Algorithms, 18(3), 2025. ISSN 1999-4893.
doi: 10.3390/a18030120. URL https://www.mdpi.com/1999-4893/18/
3/120.

[5] H. Chen, S. Lundberg, and S.-I. Lee. Explaining models by propagat-
ing shapley values of local components. Explainable AI in Healthcare
and Medicine: Building a Culture of Transparency and Accountability,
pages 261–270, 2021. doi: 10.1007/978-3-030-53352-6_24.

[6] L. Deng. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29(6):141–142,
2012.

[7] D. Erhan, I. Goodfellow, W. Cukierski, and Y. Bengio. Chal-
lenges in representation learning: Facial expression recog-
nition challenge. https://www.kaggle.com/competitions/
challenges-in-representation-learning-facial-expression-recognition-challenge,
2013. Kaggle competition, Accessed: 2025-06-24.

[8] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pe-
dreschi. A survey of methods for explaining black box models. ACM
computing surveys (CSUR), 51(5):1–42, 2018. doi: 10.1145/3236009.

[9] L. V. Haar, T. Elvira, and O. Ochoa. An analysis of explainability meth-
ods for convolutional neural networks. Engineering Applications of Ar-
tificial Intelligence, 117:105606, 2023. doi: 10.1016/j.engappai.2022.
105606.

[10] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical Report TR-2009, University of Toronto, 2009.

[11] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, pages 1135–1144, 2016. doi: 10.1145/2939672.2939778.

[12] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017. doi: 10.1109/
ICCV.2017.74.


